储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4264-4273.doi: 10.19799/j.cnki.2095-4239.2025.0340

• 储能系统与工程 • 上一篇    下一篇

储能电站预制舱磷酸铁锂电池热失控燃爆危害仿真研究

张少刚1,2(), 张润箫1, 聂细亮3, 谭钰凡1, 刘家豪1,2, 汪金辉1,2, 刘江虹1,2, 丛北华4()   

  1. 1.上海海事大学海洋科学与工程学院,上海 201306
    2.危化品风险预警防控关键技术及装备重点实验室,上海 2013062
    3.中远海运石油运输有限公司,辽宁 大连 116021
    4.同济大学上海防灾救灾研究所,上海 200092
  • 收稿日期:2025-04-05 修回日期:2025-05-06 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 丛北华 E-mail:sgzhang@shmtu.edu.cn;bhcong@tongji.edu.cn
  • 作者简介:张少刚(1987—),男,工学博士,讲师,研究储能消防安全,E-mail:sgzhang@shmtu.edu.cn
  • 基金资助:
    上海市“科技创新行动计划”社会发展科技项目(22dz1201102);上海市“科技创新行动计划”社会发展科技项目(22dz1201103);上海市软科学重点项目(24692105900)

Simulation study on thermal runaway explosion hazards of lithium iron phosphate batteries in prefabricated cabins of energy storage power stations

Shaogang ZHANG1,2(), Runxiao ZHANG1, Xiliang NIE3, Yufan TAN1, Jiahao LIU1,2, Jinhui WANG1,2, Jianghong LIU1,2, Beihua CONG4()   

  1. 1.Marine Science and Engineering College, Shanghai Maritime University, Shanghai 201306, China
    2.Key Laboratory of Key Technologies and Equipment for Early Warning, Prevention and Control of Hazardous Chemical Risks, Shanghai 201306, China
    3.COSCO SHIPPING Petroleum Transportation Co. , Ltd. , Dalian 116021, Liaoning, China
    4.Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, China
  • Received:2025-04-05 Revised:2025-05-06 Online:2025-11-28 Published:2025-11-24
  • Contact: Beihua CONG E-mail:sgzhang@shmtu.edu.cn;bhcong@tongji.edu.cn

摘要:

近年来,全世界各地发生了多起储能电站火灾爆炸事故,造成了重大人员伤亡和财产损失,锂电池储能系统安全性亟待提高。本工作通过FLACS软件建立储能舱的物理模型,模拟了磷酸铁锂电池热失控后可燃气体的泄漏、扩散及爆炸过程,分析了不同泄漏时间、点火高度等条件下,可燃气体的浓度分布、爆炸压力、火焰形态等特征参数,探讨了其对储能电站安全的影响,为储能电站的安全设计和事故预防提供理论依据。研究表明,磷酸铁锂电池热失控后,可燃气体优先在舱顶聚集,随着泄漏时间增加,高浓度区域自上而下扩大,7 s时基本覆盖全舱。泄漏前期0~3 s发生爆炸概率大,爆炸强度随泄漏浓度增加而增加;泄漏后期舱内氧气不足,爆炸概率降低,但点火高度在1.75 m时爆炸强度最大;储能电站磷酸铁锂电池热失控后,可燃气体的扩散和燃爆危害性显著,尤其在泄漏前期和特定点火高度下,爆炸风险极高。因此,储能电站的设计应充分考虑气体扩散和爆炸特性,优化泄压板设置和防护措施,以降低热失控引发的火灾爆炸风险。

关键词: 储能电站, 磷酸铁锂电池, 热失控, 气体扩散, 数值模拟

Abstract:

In recent years, numerous fire and explosion accidents have occurred in energy storage power stations due to battery thermal runaway, causing severe casualties and property losses. Therefore, improving the safety of energy storage systems is an urgent priority. In this study, a physical model of a prefabricated energy storage cabin was established using FLACS software to simulate the leakage, diffusion, and explosion processes of combustible gases released during the thermal runaway of lithium iron phosphate (LFP) batteries. Characteristic parameters, including concentration distribution, explosion pressure, and flame morphology of combustible gases, were analyzed under varying leakage durations and ignition heights, and their impacts on the safety of energy storage power stations were evaluated. The results indicate that following LFP thermal runaway, combustible gases accumulate preferentially beneath the cabin roof. With longer leakage durations, the high-concentration zone expands downward, nearly filling the entire cabin within 7 s. During the early leakage stage (0—3 s), the probability of explosion is high, and the explosion intensity increases with rising gas concentration. At later stages, oxygen inside the cabin becomes insufficient, reducing the probability of explosion; however, the explosion intensity reaches its maximum when the ignition height is 1.75 m. These findings highlight that LFP thermal runaway in energy storage cabins poses considerable diffusion and explosion hazards, particularly during the initial leakage stage and at specific ignition heights. Therefore, the design of energy storage power stations should carefully account for gas diffusion and explosion characteristics, with optimized deployment of pressure relief panels and protective measures to mitigate fire and explosion risks.

Key words: energy storage power station, lithium iron phosphate battery, thermal runaway, gaseous diffusion, numerical simulation

中图分类号: