| [1] |
王学军, 刘速, 乔祥祺, 等. 锂离子电池储能系统安全与标准研究进展[J]. 浙江化工, 2023, 54(10): 8-15.
|
|
WANG X J, LIU S, QIAO X Q, et al. Research progress on safety and standards of lithium-ion battery energy storage system[J]. Zhejiang Chemical Industry, 2023, 54(10): 8-15.
|
| [2] |
郭超超, 张青松. 锂离子电池热解气体爆炸极限测定及其危险性分析[J]. 中国安全生产科学技术, 2016, 12(9): 46-49.
|
|
GUO C C, ZHANG Q S. Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J]. Journal of Safety Science and Technology, 2016, 12(9): 46-49.
|
| [3] |
徐艺博, 朱艳丽, 杨凯, 等. 储能用锂电池热失控可燃气体爆燃过程研究[J]. 消防科学与技术, 2024, 43(5): 634-640. DOI: 10.20168/j.1009-0029.2024.05.634.07.
|
|
XU Y B, ZHU Y L, YANG K, et al. Research on the explosive combustion process of thermal runaway combustible gas of lithium battery for energy storage[J]. Fire Science and Technology, 2024, 43(5): 634-640. DOI: 10.20168/j.1009-0029.2024.05.634.07.
|
| [4] |
ZHANG Q S, NIU J H, YANG J, et al. In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway[J]. Journal of Energy Storage, 2022, 56: 106146. DOI: 10.1016/j.est.2022.106146.
|
| [5] |
卓萍, 朱艳丽, 齐创, 等. 锂离子电池组过充燃烧爆炸特性[J]. 储能科学与技术, 2022, 11(8): 2471-2479. DOI: 10.19799/j.cnki.2095-4239. 2022.0276.
|
|
ZHUO P, ZHU Y L, QI C, et al. Combustion and explosion characteristics of lithium-ion battery pack under overcharge[J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. DOI: 10.19799/j.cnki.2095-4239.2022.0276.
|
| [6] |
吴才可, 韦泽羽, 李良, 等. 锰基锂离子电池正极材料研究进展综述[J]. 中国锰业, 2024, 42(4): 10-13. DOI: 10.14101/j.cnki.issn.1002-4336.2024.04.001.
|
|
WU C K, WEI Z Y, LI L, et al. Review of research progress on positive electrode materials for manganese-based lithium-ion batteries[J]. China Manganese Industry, 2024, 42(4): 10-13. DOI: 10.14101/j.cnki.issn.1002-4336.2024.04.001.
|
| [7] |
刘云建, 宋杨, 魏洪兵, 等. 锰酸锂电池储存后容量衰减机理[J]. 中国有色金属学报, 2011, 21(11): 2812-2818. DOI: 10.19476/j.ysxb. 1004.0609.2011.11.016.
|
|
LIU Y J, SONG Y, WEI H B, et al. Capacity fading mechanism of LiMn2O4 cell after storage[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2812-2818. DOI: 10.19476/j.ysxb.1004. 0609.2011.11.016.
|
| [8] |
郭志慧, 赵林双. 锂离子电池箱爆炸危险性仿真及泄爆设计[J]. 电池, 2022, 52(1): 30-34. DOI: 10.19535/j.1001-1579.2022.01.008.
|
|
GUO Z H, ZHAO L S. Simulation of explosion hazard of Li-ion battery box and design of explosion venting[J]. Battery Bimonthly, 2022, 52(1): 30-34. DOI: 10.19535/j.1001-1579.2022.01.008.
|
| [9] |
SOMANDEPALLI V, MARR K, HORN Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries[J]. SAE International Journal of Alternative Powertrains, 2014, 3(1): 98-104. DOI: 10.4271/2014-01-1857.
|
| [10] |
ZHANG M J, YANG K, ZHANG Q J, et al. Simulation of dispersion and explosion characteristics of LiFePO4 lithium-ion battery thermal runaway gases[J]. ACS Omega, 2024, 9(15): 17036-17044. DOI: 10.1021/acsomega.3c08709.
|
| [11] |
LU T Y, CHIANG C C, WU S H, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1083-1088. DOI: 10.1007/s10973-013-3137-9.
|
| [12] |
牛志远, 金阳, 孙磊, 等. 预制舱式磷酸铁锂电池储能电站燃爆事故模拟及安全防护仿真研究[J]. 高电压技术, 2022, 48(5): 1924-1933. DOI: 10.13336/j.1003-6520.hve.20201465.
|
|
NIU Z Y, JIN Y, SUN L, et al. Safety protection simulation research and fire explosion accident simulation of prefabricated compartment lithium iron phosphate energy storage power station[J]. High Voltage Engineering, 2022, 48(5): 1924-1933. DOI: 10. 13336/j.1003-6520.hve.20201465.
|
| [13] |
赵智兴. 预制舱式锂离子电池储能电站气体爆炸特性研究[D]. 郑州: 郑州大学, 2021. DOI: 10.27466/d.cnki.gzzdu.2021.000180.
|
| [14] |
尹康涌, 陶风波, 梁伟, 等. 双层结构预制舱式磷酸铁锂储能电站热失控气体爆炸模拟[J]. 储能科学与技术, 2022, 11(8): 2488-2496. DOI: 10.19799/j.cnki.2095-4239.2022.0087.
|
|
YIN K Y, TAO F B, LIANG W, et al. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station[J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. DOI: 10.19799/j.cnki.2095-4239.2022.0087.
|
| [15] |
HANSEN O R, JOHNSON D M. Improved far-field blast predictions from fast deflagrations, DDTs and detonations of vapour clouds using FLACS CFD[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 293-306. DOI: 10.1016/j.jlp. 2014.11.005.
|
| [16] |
徐景德, 李晖, 郝旭. FLACS在受限空间可燃气体爆炸传播研究中的应用[J]. 华北科技学院学报, 2016, 13(3): 7-11.
|
|
XU J D, LI H, HAO X. Application of FLACS in the study of numerical simulation of gas explosion in confined space[J]. Journal of North China Institute of Science and Technology, 2016, 13(3): 7-11.
|
| [17] |
陈满, 程志翔, 赵春朋, 等. 锂离子电池储能集装箱爆炸危害数值模拟[J]. 储能科学与技术, 2023, 12(8): 2594-2605. DOI: 10.19799/j.cnki.2095-4239.2023.0265.
|
|
CHEN M, CHENG Z X, ZHAO C P, et al. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers[J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. DOI: 10.19799/j.cnki.2095-4239.2023.0265.
|
| [18] |
QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: 118767. DOI: 10.1016/j.apenergy.2022.118767.
|
| [19] |
魏志宁, 陈稳, 卞灿灿, 等. 热过载LiFePO4锂离子电池的热失控特性[J]. 电池, 2025, 55(2): 227-231.
|
|
WEI Z N, CHEN W, BIAN C C, et al. Thermal runaway characterization of thermally overloaded LiFePO4 Li-ion battery[J]. Dianchi(Battery Bimonthly), 2025, 55(2): 227-231.
|
| [20] |
MAO B B, ZHAO C P, CHEN H D, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281: 116054. DOI: 10.1016/j.apenergy.2020.116054.
|
| [21] |
LI H W, RUI S C, GUO J, et al. Effect of ignition position on vented hydrogen-air deflagration in a 1 m3 vessel[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103944. DOI: 10.1016/j.jlp.2019.103944.
|