储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1804-1814.doi: 10.19799/j.cnki.2095-4239.2023.0029
收稿日期:
2023-01-16
修回日期:
2023-02-13
出版日期:
2023-06-05
发布日期:
2023-06-21
通讯作者:
孙进
E-mail:liumingrui.fshy@sinopec.com;sunjin.fshy@sinopec.com
作者简介:
刘名瑞(1985—),女,硕士,副研究员,研究方向为新能源储运工艺,E-mail:liumingrui.fshy@sinopec.com;
基金资助:
Mingrui LIU(), Kai DING, Wei WANG, Jin SUN(
)
Received:
2023-01-16
Revised:
2023-02-13
Online:
2023-06-05
Published:
2023-06-21
Contact:
Jin SUN
E-mail:liumingrui.fshy@sinopec.com;sunjin.fshy@sinopec.com
摘要:
氢能是可持续的二次清洁能源,在规模化应用的进程中,氢气的储运技术是制约氢能产业链发展的关键因素。物理吸附储氢技术是未来氢气安全应用的重要途径之一,但仍需克服储氢容量低和室温储氢难的技术难题。围绕物理吸附储氢技术研究,总结归纳了碳基材料(如活性炭、石墨烯、碳纳米管、介孔碳和碳气凝胶)、有机骨架材料[如金属有机骨架材料(MOFs)和共价有机骨架材料(COFs)]、水合物3类作为储氢材料的研发历程和研究进展,介绍了各类材料在提升储氢容量方面的研究成果和技术手段,同时分析了上述物理吸附储氢材料的储氢原理和在氢气储运利用上的技术特点,对比基于不同物理吸附机制的储氢材料优缺点,为氢储运技术应用提供进一步应用分析依据。最后针对未来固态储氢的发展趋势和目前的技术瓶颈,对物理吸附储氢技术突破点和发展方向提出建议。物理吸附储氢技术虽然具有明显的技术瓶颈,但与其他储氢技术结合形成复合储氢体系,仍然具有很好的协同效应,帮助提高储氢效率、改善吸放氢动力学和热力学性能,是储氢领域必要的技术分支。
中图分类号:
刘名瑞, 丁凯, 王唯, 孙进. 基于物理吸附储氢材料的研究进展[J]. 储能科学与技术, 2023, 12(6): 1804-1814.
Mingrui LIU, Kai DING, Wei WANG, Jin SUN. Research progress of hydrogen storage materials based on physical adsorption[J]. Energy Storage Science and Technology, 2023, 12(6): 1804-1814.
表1
不同碳纳米管储氢能力研究"
样品 | 纯度 | 温度/K | 压力/MPa | 储氢量/% | 参考文献 |
---|---|---|---|---|---|
SWNT | 热处理 | 77 | 0.1 | 1 | Ansón等[ |
SWNT | 纯化 | 室温 | 4.8 | 1.2 | Smith等[ |
SWNT | 非纯化 | 295 | 0.1 | 0.93 | Nishimiya等[ |
SWNT | 非纯化 | 77 | 0.1 | 2.37 | Nishimiya等[ |
MWNT | 非纯化 | 298 | — | 0.5 | Ritschel等[ |
MWNT | 酸处理 | 300 | 1.0 | 13.8 | Chen等[ |
MWNT | 高度纯化 | 300 | 7.0 | 0.7—0.8 | Badzian等[ |
CNT | 酸处理 | 300 | <7 | 0.5 | García-García等[ |
Co, Li loaded MWCNTs | 纯化、活化 | — | — | 0.6—1.33 | Aghababaei等[ |
Ti-4ND-SWCNT | — | — | 5.85 | Ghosh等[ | |
Mg-5.7Zn-0.6Zr-CNT | — | 280 | — | 7.13 | Abbas等[ |
SWNT-Ti-6Al-4V | 纯化 | 室温 | 0.08 | 1.7 | Hirscher等[ |
SWNT-Fe | 纯化 | 室温 | 0.08 | <0.005 | Hirscher等[ |
Li-CNT | 纯化 | 473~673 | 0.1 | 20 | Chen等[ |
K-CNT | 纯化 | <313 | 0.1 | 14 | Chen等[ |
Li-CNT (干H2) | 纯化 | 473~673 | 0.1 | 2.5 | Yang[ |
K-CNT (干H2) | 纯化 | <313 | 0.1 | 1.8 | Yang[ |
MWNT-1 mol/L KNO3 | N2气氛下热处理 | 室温 | 12 | 3.2 | Huang[ |
表2
不同有机骨架材料的储氢性能"
材料 | 特征 | 温度/K | 压力/MPa | 储氢量/% | 参考文献 |
---|---|---|---|---|---|
HKUST-1① | 473 K煅烧 | 303 | 3.5 | 0.47 | Lin等[ |
Zn1.72Co0.28(DHBDC)(DMF)0.1② | 开放金属位 | 77 | 1 | 3.08 | Botas等[ |
Zn0.78Co1.22(DHBDC)(DMF)0.1 | 开放金属位 | 77 | 1 | 2.73 | Botas等[ |
Co2(DHBDC)(DMF)0.09 | 开放金属位 | 77 | 1 | 3.23 | Botas等[ |
IRMOF-1③ | 77 | 3.5 | 6.0 | Mccarthy等[ | |
IRMOF-1 | 77 | 1.4 | 4.5 | Tedds等[ | |
IRMOF-1 | 137 | 1.4 | 1.0 | Tedds等[ | |
Cu3(BTC)2 | 77 | 1.4 | 4.2 | Tedds等[ | |
Cu3(BTC)2 | 132 | 1.4 | 1.8 | Tedds等[ | |
MNMOF-5④ | 298 | 1.9 | 0.15 | Xin等[ | |
Cu(II)-MOF | 不饱和金属中心 | 77 | 6.2 | 6.6 | Saha等[ |
NJU-Bai12⑤ | 77 | 2 | 5.24 | Zheng等[ | |
MOF-808 | (三氯甲基)碳酸酯上苯环存在缺电子态 | 77 | 4 | 7.31 | Xu等[ |
MOF-519⑥ | 233 | 10 | 4.5 | Rahali等[ | |
Cu-BTC | 77 | 3 | 4.15 | Chen等[ | |
COF-108-Li6C60 | 233 | 10 | 4.56 | Ke等[ | |
COF-102 | 77 | 3.5 | 7.2 | Furukawa等[ | |
COF-103 | 77 | 3.5 | 7.01 | Furukawa等[ |
1 | 李建, 张立新, 李瑞懿, 等. 高压储氢容器研究进展[J]. 储能科学与技术, 2021, 10(5): 1835-1844. |
LI J, ZHANG L X, LI R Y, et al. High-pressure gaseous hydrogen storage vessels: Current status and prospects[J]. Energy Storage Science and Technology, 2021, 10(5): 1835-1844. | |
2 | KIDNAY A J, HIZA M J. Physical adsorption in cryogenic engineering[J]. Cryogenics, 1970, 10(4): 271-277. |
3 | CARPETIS C, PESCHKA W. A study on hydrogen storage by use of cryoadsorbents[J]. International Journal of Hydrogen Energy, 1980, 5(5): 539-554. |
4 | AMANKWAH K A G, NOH J S, SCHWARZ J A. Hydrogen storage on superactivated carbon at refrigeration temperatures[J]. International Journal of Hydrogen Energy, 1989, 14(7): 437-447. |
5 | ZHOU L, ZHOU Y P, SUN Y. Enhanced storage of hydrogen at the temperature of liquid nitrogen[J]. International Journal of Hydrogen Energy, 2004, 29(3): 319-322. |
6 | PEDICINI R, MAISANO S, CHIODO V, et al. Posidonia Oceanica and Wood chips activated carbon as interesting materials for hydrogen storage[J]. International Journal of Hydrogen Energy, 2020, 45(27): 14038-14047. |
7 | BLANKENSHIP L S, BALAHMAR N, MOKAYA R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity[J]. Nature Communications, 2017, 8(1): 1-12. |
8 | BALAHMAR N, MOKAYA R. Pre-mixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: Towards predicting the activation behaviour of carbonaceous matter[J]. Journal of Materials Chemistry A, 2019, 7(29): 17466-17479. |
9 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
10 | HUSSAIN T, PATHAK B, ADIT MAARK T, et al. Ab initio study of lithium-doped graphane for hydrogen storage[J]. EPL (Europhysics Letters), 2011, 96(2): doi: 10.1209/0295-5075/96/27013. |
11 | ATACA C, AKTÜRK E, CIRACI S. Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations[J]. Physical Review B, 2009, 79(4): doi: 10.1103/physrevb.79.041406. |
12 | LI C, LI J B, WU F M, et al. High capacity hydrogen storage in Ca decorated graphyne: A first-principles study[J]. The Journal of Physical Chemistry C, 2011, 115(46): 23221-23225. |
13 | WANG Y S, JI Y, LI M, et al. Li and Ca Co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media[J]. Journal of Applied Physics, 2011, 110(9): doi: 10.1063/1.3656454. |
14 | BI L, DING J Y, ZOU J Y, et al. DFT study of hydrogen sorption on light metal (Li, Be, and Na) decorated novel fullerene-CNTs networks[J]. Applied Surface Science, 2021, 569: doi: 10.1016/j.apsusc.2021.151000. |
15 | GHOSH A, SUBRAHMANYAM K S, KRISHNA K S, et al. Uptake of H2 and CO2 by graphene[J]. The Journal of Physical Chemistry C, 2008, 112(40): 15704-15707. |
16 | PARAMBHATH V B, NAGAR R, SETHUPATHI K, et al. Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene[J]. The Journal of Physical Chemistry C, 2011, 115(31): 15679-15685. |
17 | ZHU H W, LI C H, LI X S, et al. Hydrogen storage by platelet-carbon fibers at room temperature[J]. Materials Letters, 2002, 57(1): 32-35. |
18 | DODZIUK H, DOLGONOS G. Molecular modeling study of hydrogen storage in carbon nanotubes[J]. Chemical Physics Letters, 2002, 356(1/2): 79-83. |
19 | YILDIRIM T, CIRACI S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium[J]. Physical Review Letters, 2005, 94(17): doi: 10.1103/PhysRevLett.94.175501. |
20 | CHEN B H. Helical confinement effects on hydrogen storage in double-walled carbon nanotubes[J]. International Journal of Hydrogen Energy, 2022, 47(11): 7328-7338. |
21 | DIMITRAKAKIS G K, TYLIANAKIS E, FROUDAKIS G E. Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Letters, 2008, 8(10): 3166-3170. |
22 | YILDIRIM T, ÍÑIGUEZ J, CIRACI S. Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60[J]. Physical Review B, 2005, 72(15): doi: 10.1103/physrevb.72.153403. |
23 | IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. |
24 | KAJIURA H, TSUTSUI S, KADONO K, et al. Hydrogen storage capacity of commercially available carbon materials at room temperature[J]. Applied Physics Letters, 2003, 82(7): 1105-1107. |
25 | RITSCHEL M, UHLEMANN M, GUTFLEISCH O, et al. Hydrogen storage in different carbon nanostructures[J]. Applied Physics Letters, 2002, 80(16): 2985-2987. |
26 | MOSQUERA-VARGAS E, TAMAYO R, MOREL M, et al. Hydrogen storage in purified multi-walled carbon nanotubes: Gas hydrogenation cycles effect on the adsorption kinetics and their performance[J]. Heliyon, 2021, 7(12): doi: 10.1016/j.heliyon.2021.e08494. |
27 | FROUDAKIS G E. Hydrogen storage in nanotubes & nanostructures[J]. Materials Today, 2011, 14(7/8): 324-328. |
28 | ANSÓN A, CALLEJAS M A, BENITO A M, et al. Hydrogen adsorption studies on single wall carbon nanotubes[J]. Carbon, 2004, 42(7): 1243-1248. |
29 | SMITH, BITTNER E W, SHI W, et al. Chemical activation of single-walled carbon nanotubes for hydrogen adsorption[J]. The Journal of Physical Chemistry B, 2003, 107(16): 3752-3760. |
30 | NISHIMIYA N, ISHIGAKI K, TAKIKAWA H, et al. Hydrogen sorption by single-walled carbon nanotubes prepared by a torch arc method[J]. Journal of Alloys and Compounds, 2002, 339(1/2): 275-282. |
31 | CHEN Y, SHAW D T, BAI X D, et al. Hydrogen storage in aligned carbon nanotubes[J]. Applied Physics Letters, 2001, 78(15): 2128-2130. |
32 | BADZIAN A, BADZIAN T, BREVAL E, et al. Nanostructured, nitrogen-doped carbon materials for hydrogen storage[J]. Thin Solid Films, 2001, 398: 170-174. |
33 | GARCÍA-GARCÍA F R, PÉREZ-CABERO M, NEVSKAIA D M, et al. Improving the synthesis of high purity carbon nanotubes in a catalytic fluidized bed reactor and their comparative test for hydrogen adsorption capacity[J]. Catalysis Today, 2008, 133: 815-821. |
34 | AGHABABAEI M, GHOREYSHI A A, ESFANDIARI K. Optimizing the conditions of multi-walled carbon nanotubes surface activation and loading metal nanoparticles for enhanced hydrogen storage[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23112-23121. |
35 | GHOSH S, PADMANABHAN V. Hydrogen storage in Titanium-doped single-walled carbon nanotubes with Stone-Wales defects[J]. Diamond and Related Materials, 2017, 77: 46-52. |
36 | ABBAS A, LIN Z B, MA R L, et al. Effects of CNTs, graphene, and organic additives on hydrogen storage performance of severely deformed ZK60 alloy[J]. International Journal of Hydrogen Energy, 2022: doi.org/10.1016/j.ijhydene.2022.07.112. |
37 | HIRSCHER M, BECHER M, HALUSKA M, et al. Hydrogen storage in sonicated carbon materials[J]. Applied Physics A, 2001, 72(2): 129-132. |
38 | CHEN P, WU X, LIN J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science, 1999, 285(5424): 91-93. |
39 | YANG R T. Hydrogen storage by alkali-doped carbon nanotubes-revisited[J]. Carbon, 2000, 38(4): 623-626. |
40 | HUANG W Z, ZHANG X B, TU J P, et al. The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes[J]. Materials Chemistry and Physics, 2003, 78(1): 144-148. |
41 | XIA K S, GAO Q M, WU C D, et al. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3[J]. Carbon, 2007, 45(10): 1989-1996. |
42 | 谢春林, 刘应亮, 孙立贤, 等. 有序介孔碳CMK-3的化学活化及储氢性能[J]. 无机化学学报, 2011, 27(12): 2395-2400. |
XIE C L, LIU Y L, SUN L X, et al. Chemical activation and hydrogen storage properties of mesoporous carbon CMK-3[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(12): 2395-2400. | |
43 | ZHANG Y, ZHANG W S, WANG A Q, et al. LiBH4 nanoparticles supported by disordered mesoporous carbon: Hydrogen storage performances and destabilization mechanisms[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3976-3980. |
44 | JEONG U, KIM H, RAMESH S, et al. Rapid access to ordered mesoporous carbons for chemical hydrogen storage[J]. Angewandte Chemie International Edition, 2021, 60(41): 22478-22486. |
45 | AMPOUMOGLI A, STERIOTIS T, TRIKALITIS P, et al. Nanostructured composites of mesoporous carbons and boranates as hydrogen storage materials[J]. Journal of Alloys and Compounds, 2011, 509: doi: 10.1016/j.jallcom.2010.10.098. |
46 | DU H Y, REN J Q, ZHANG W C, et al. Ni nanoparticles in situ embedment in 3D ordered macro-/ mesoporous carbon framework as efficient microwave absorption and infrared stealth materials[J]. Carbon, 2023, 204: 325-335. |
47 | XING Y L, FANG B Z, BONAKDARPOUR A, et al. Facile fabrication of mesoporous carbon nanofibers with unique hierarchical nanoarchitecture for electrochemical hydrogen storage[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7859-7867. |
48 | CARRARO P M, GARCÍA BLANCO A A, LENER G, et al. Nanostructured carbons modified with nickel as potential novel reversible hydrogen storage materials: Effects of nickel particle size[J]. Microporous and Mesoporous Materials, 2019, 273: 50-59. |
49 | TIAN H Y, BUCKLEY C E, WANG S B, et al. Enhanced hydrogen storage capacity in carbon aerogels treated with KOH[J]. Carbon, 2009, 47(8): 2128-2130. |
50 | 沈军, 刘念平, 欧阳玲, 等. 纳米多孔碳气凝胶的储氢性能[J]. 强激光与粒子束, 2011, 23(6): 1517-1522. |
SHEN J, LIU N P, OUYANG L, et al. Hydrogen storage property of nanoporous carbon aerogels[J]. High Power Laser and Particle Beams, 2011, 23(6): 1517-1522. | |
51 | PANDEY A P, BHATNAGAR A, SHUKLA V, et al. Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30818-30827. |
52 | SINGH S, BHATNAGAR A, DIXIT V, et al. Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3561-3570. |
53 | PANG H Q, LI S, LI Z Y. Grand canonical Monte Carlo simulations of hydrogen adsorption in carbon aerogels[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34807-34821. |
54 | ROWSELL J L C, YAGHI O M. Strategies for hydrogen storage in metal-organic frameworks[J]. Angewandte Chemie International Edition, 2005, 44(30): 4670-4679. |
55 | ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129. |
56 | 安博. 夹心多核茂合物Cp2Mgn结构和储氢性能的第一性原理研究[J]. 人工晶体学报, 2015, 44(5): 1398-1403. |
AN B. First-principles study on the structure and hydrogen storage properties of sandwich-type multi-metallocenes[J]. Journal of Synthetic Crystals, 2015, 44(5): 1398-1403. | |
57 | ELSABAWY K M, FALLATAH A M, OWIDAH Z O. Synthesis of newly crystalline-porous-Pd(II)-(E, E)-2, 4-hexadienoic acid complex-leads to 3D-MOFs for hydrogen storage[J]. Journal of Molecular Structure, 2022, 1250: doi: 10.1016/j.molstruc.2021. 131723. |
58 | LANGMI H W, REN J W, NORTH B, et al. Hydrogen storage in metal-organic frameworks: A review[J]. Electrochimica Acta, 2014, 128: 368-392. |
59 | FARHA O K, ÖZGÜR YAZAYDıN A, ERYAZICI I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities[J]. Nature Chemistry, 2010, 2(11): 944-948. |
60 | SUMIDA K, HILL M R, HORIKE S, et al. Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4[J]. Journal of the American Chemical Society, 2009, 131(42): 15120-15121. |
61 | HAN D, JIANG F L, WU M Y, et al. A non-interpenetrated porous metal-organic framework with high gas-uptake capacity[J]. Chemical Communications, 2011, 47(35): 9861-9863. |
62 | WONG-FOY A G, MATZGER A J, YAGHI O M. Exceptional H2 saturation uptake in microporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2006, 128(11): 3494-3495. |
63 | KAYE S S, DAILLY A, YAGHI O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)[J]. Journal of the American Chemical Society, 2007, 129(46): 14176-14177. |
64 | LIM D W, YOON J W, RYU K Y, et al. Magnesium nanocrystals embedded in a metal-organic framework: Hybrid hydrogen storage with synergistic effect on physi- and chemisorption[J]. Angewandte Chemie International Edition, 2012, 51(39): 9814-9817. |
65 | KUDIIAROV V, LYU J Z, SEMYONOV O, et al. Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage[J]. Applied Materials Today, 2021, 25: doi: 10.1016/j.apmt.2021.101208. |
66 | YUAN D Q, ZHAO D, SUN D F, et al. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity[J]. Angewandte Chemie International Edition, 2010, 49(31): 5357-5361. |
67 | CAO D P, LAN J H, WANG W C, et al. Lithium-doped 3D covalent organic frameworks: High-capacity hydrogen storage materials[J]. Angewandte Chemie, 2009, 121(26): 4824-4827. |
68 | LAN J H, CAO D P, WANG W C. Li-doped and nondoped covalent organic borosilicate framework for hydrogen storage[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3108-3114. |
69 | LI Y W, YANG R T. Hydrogen storage in metal-organic and covalent-organic frameworks by spillover[J]. AIChE Journal, 2008, 54(1): 269-279. |
70 | SONG Y, DAI J H. Mechanisms of dopants influence on hydrogen uptake in COF-108: A first principles study[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14668-14674. |
71 | LIN K S, ADHIKARI A K, KU C N, et al. Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13865-13871. |
72 | BOTAS J A, CALLEJA G, SÁNCHEZ-SÁNCHEZ M, et al. Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy[J]. International Journal of Hydrogen Energy, 2011, 36(17): 10834-10844. |
73 | MCCARTHY R, ACHENIE L E K. Agent-based modeling-proof of concept application to membrane separation and hydrogen storage in a MOF[J]. Computers & Chemical Engineering, 2017, 107: 151-157. |
74 | TEDDS S, WALTON A, BROOM D P, et al. Characterisation of porous hydrogen storage materials: Carbons, zeolites, MOFs and PIMs[J]. Faraday Discussions, 2011, 151: 75-94. |
75 | XIN Z F, BAI J F, PAN Y, et al. Synthesis and enhanced H2 adsorption properties of a mesoporous nanocrystal of MOF-5: Controlling nano-/ mesostructures of MOFs to improve their H2 heat of adsorption[J]. Chemistry-A European Journal, 2010, 16(44): 13049-13052. |
76 | SAHA R, SHARMA V, DE D, et al. A (T-P) phase diagram for the adsorption/desorption of carbon dioxide and hydrogen in a Cu(II)-MOF[J]. Polyhedron, 2018, 153: 254-260. |
77 | ZHENG B S, YUN R R, BAI J F, et al. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption[J]. Inorganic Chemistry, 2013, 52(6): 2823-2829. |
78 | XU J, LIU J, LI Z, et al. Optimized synthesis of Zr(IV) metal organic frameworks (MOFs-808) for efficient hydrogen storage[J]. New Journal of Chemistry, 2019, 43(10): 4092-4099. |
79 | RAHALI S, BELHOCINE Y, SEYDOU M, et al. Multiscale study of the structure and hydrogen storage capacity of an aluminum metal-organic framework[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15271-15282. |
80 | CHEN S M, SHI Y M, GU B. Simulation on hydrogen storage properties of metal-organic frameworks Cu-BTC at 77~298 K[J]. AIChE Journal, 2018, 64(4): 1383-1388. |
81 | KE Z P, CHENG Y Y, YANG S Y, et al. Modification of COF-108 via impregnation/functionalization and Li-doping for hydrogen storage at ambient temperature[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11461-11468. |
82 | FURUKAWA H, YAGHI O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
83 | FLORUSSE L J, PETERS C J, SCHOONMAN J, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate[J]. Science, 2004, 306(5695): 469-471. |
84 | 陈思远, 王燕鸿, 郎雪梅, 等. 动力学强化水合储氢技术研究进展[J]. 储能科学与技术, 2022, 11(12): 3787-3799. |
CHEN S Y, WANG Y H, LANG X M, et al. Review of the kinetics enhancement technology of hydrogen storage in clathrate hydrates[J]. Energy Storage Science and Technology, 2022, 11(12): 3787-3799. | |
85 | LOKSHIN K A, ZHAO Y S, HE D W, et al. Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction[J]. Physical Review Letters, 2004, 93(12): doi: 10.1103/PhysRevLett.93.125503. |
86 | 于驰. 新型水合物复合储氢技术研究[D]. 广州: 华南理工大学, 2018. |
YU C. Study on new hydrate composite hydrogen storage technology[D]. Guangzhou: South China University of Technology, 2018. | |
87 | 陈俊, 陈秋雄, 陈运文, 等. 水合物储能技术研究现状[J]. 储能科学与技术, 2015, 4(2): 131-140. |
CHEN J, CHEN Q X, CHEN Y W, et al. Current status of energy storage using hydrates[J]. Energy Storage Science and Technology, 2015, 4(2): 131-140. | |
88 | DAVOODABADI A, MAHMOUDI A, GHASEMI H. The potential of hydrogen hydrate as a future hydrogen storage medium[J]. iScience, 2020, 24(1): doi: 10.1016/j.isci.2020.101907. |
89 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. |
[1] | 李荣, 孙志高, 宋佳. 氨基酸侧链对HCFC-141b水合物形成的影响[J]. 储能科学与技术, 2022, 11(7): 2126-2132. |
[2] | 贾林辉, 盖泽嘉, 李沫汐, 梁华根. MOFs及其衍生物在锂-氧气电池正极中的研究进展[J]. 储能科学与技术, 2022, 11(2): 503-510. |
[3] | 陈思远, 王燕鸿, 郎雪梅, 樊栓狮. 动力学强化水合储氢技术研究进展[J]. 储能科学与技术, 2022, 11(12): 3787-3799. |
[4] | 陆佳敏, 徐俊辉, 王卫东, 王浩, 徐孜俊, 陈留平. 大规模地下储氢技术研究展望[J]. 储能科学与技术, 2022, 11(11): 3699-3707. |
[5] | 李建, 张立新, 李瑞懿, 杨啸, 张挺. 高压储氢容器研究进展[J]. 储能科学与技术, 2021, 10(5): 1835-1844. |
[6] | 杨春燕, 马云龙, 冯小琼, 张世英, 安长胜, 李劲风. 碳基材料在铝离子电池中的研究进展[J]. 储能科学与技术, 2021, 10(2): 432-439. |
[7] | 王旭东, 尹钊, 刘畅, 张华良, 徐玉杰, 陈海生, 周学志. 储能技术在军事领域中的应用与展望[J]. 储能科学与技术, 2020, 9(S1): 52-61. |
[8] | 赵鑫, 可丹丹, 吉力强, 胡锋, 蔡颖. Sm对La0.5Nd0.35-xSmxMg0.15Ni3.5合金晶体结构和储氢性能的影响[J]. 储能科学与技术, 2020, 9(4): 1066-1073. |
[9] | 许壮, 杨康, 董文平, 何广利. 燃料电池车载储氢瓶结构对加氢温升的影响[J]. 储能科学与技术, 2020, 9(3): 679-683. |
[10] | 闫红丽, 敬志良, 陆佐伟, 王玉琪, 吴震. 基于化学吸/脱附固态储氢的PEMFC动力系统耦合特性研究[J]. 储能科学与技术, 2020, 9(1): 152-161. |
[11] | 李震东, 王振华, 张仕龙, 符春林. MOFs及其衍生物作为锂离子电池电极的研究进展[J]. 储能科学与技术, 2020, 9(1): 18-24. |
[12] | 张贺贺, 孙旦, 王海燕, 唐有根. 钾离子电池负极材料研究进展[J]. 储能科学与技术, 2020, 9(1): 25-39. |
[13] | 李璐伶, 樊栓狮, 陈秋雄, 杨光, 温永刚. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
[14] | 丰洪微,范哲超. 羟基镍粉对Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3合金电极电化学性能的影响[J]. 储能科学与技术, 2018, 7(2): 288-293. |
[15] | 刘艳军,董孟阳,江磊磊,李 文,黄志强. 天然气水合物沉积物颗粒影响实验[J]. 储能科学与技术, 2017, 6(4): 789-798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||