1 |
禤宗衡, 荆朝霞, 叶文圣, 等. 考虑储能灵活能量状态的新型电能量市场机制[J]. 电网技术, 2022, 46(10): 3810-3823.
|
|
XUAN Z H, JING Z X, YE W S, et al. New energy market mechanism considering flexible state of energy in energy storage[J]. Power System Technology, 2022, 46(10): 3810-3823.
|
2 |
中华人民共和国国家发展和改革委员会, 国家能源局.关于完善能源绿色低碳转型体制机制和政策措施的意见[EB/OL].[2022-02-10].https:// www.ndrc.gov.cn/xxgk/zcfb/tz/202202/t20220210_1314511_ext.html.
|
3 |
ZIAD C, RAJAMANI H S, MANIKAS I. Game-theoretic approach to fleet management for vehicle to grid services[C]//2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). December 10-12, 2019, Ajman, United Arab Emirates. IEEE, 2020: 1-5.
|
4 |
KUBLI M. EV drivers' willingness to accept smart charging: Measuring preferences of potential adopters[J]. Transportation Research Part D: Transport and Environment, 2022, 109: 103396.
|
5 |
LI Y T, SU H, CHEN X X, et al. A V2G scheduling strategy based on electric vehicle users' willingness model[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). October 22-24, 2021, Taiyuan, China. IEEE, 2022: 237-243.
|
6 |
DARAMOLA A S, AHMADI S E, MARZBANDV M, et al. A cost-effective and ecological stochastic optimization for integration of distributed energy resources in energy networks considering vehicle-to-grid and combined heat and power technologies[J]. Journal of Energy Storage, 2023, 57: 106203.
|
7 |
XIONG S Q, YUAN Y, YAO J A, et al. Exploring consumer preferences for electric vehicles based on the random coefficient logit model[J]. Energy, 2023, 263: 125504.
|
8 |
陈丽丹, 欧阳慧林. 考虑用车紧急度的电动汽车充放电模糊逻辑控制策略[J]. 电力自动化设备, 2020, 40(5): 62-74.
|
|
CHEN L D, OUYANG H L. Fuzzy logical control strategy of EV charging/discharging considering perceived urgency[J]. Electric Power Automation Equipment, 2020, 40(5): 62-74.
|
9 |
潘樟惠, 高赐威. 基于需求响应的电动汽车经济调度[J]. 电力建设, 2015, 36(7): 139-145.
|
|
PAN Z H, GAO C W. Economic dispatch of electric vehicles based on demand response[J]. Electric Power Construction, 2015, 36(7): 139-145.
|
10 |
ALIZADEH M, JAFARI-NOKANDI M, SHAHABI M. Resiliency improvement of distribution network considering the charge/discharge management of electric vehicles in parking lots through a bilevel optimization approach[J]. International Transactions on Electrical Energy Systems, 2022: 1-20.
|
11 |
XIONG S Q, YUAN Y, YAO J, et al. Exploring consumer preferences for electric vehicles based on the random coefficient logit model[J]. Energy, 2023, 263: 125504.
|
12 |
ZHANG Z K, SHENG N, ZHAO D Q, et al. Are residents more willing to buy and pay for electric vehicles under the "carbon neutrality"[R]. Energy Reports, 2023, 9(3): 510-521.
|
13 |
杨捷, 曹子健. 电动汽车储能V2G模式的成本与收益分析[J]. 储能科学与技术, 2020, 9(S1): 45-51.
|
|
YANG J, CAO Z J. Cost and benefit analysis of EV energy storage through V2G[J]. Energy Storage Science and Technology, 2020, 9(S1): 45-51.
|
14 |
康小平, 聂慧慧, 郜敏等. 电动汽车全生命周期碳排放[J].储能科学与技术, 2023,12(3): 976-984.
|
|
KANG X P, NIE H H, GAO M, et al. Research on carbon emission of electric vehicle in its life cycle[J]. Energy Storage Science and Technology, 2023,12(3): 976-984.
|
15 |
郑鑫, 邱泽晶, 郭松, 等. 电动汽车V2G调度优化策略的多指标评估方法[J]. 新能源进展, 2022, 10(5): 485-494.
|
|
ZHENG X, QIU Z J, GUO S, et al. Multi-index evaluation method considering V2G scheduling optimization strategy of EV charging and discharging[J]. Advances in New and Renewable Energy, 2022, 10(5): 485-494.
|
16 |
武光华, 李宏胜, 李飞, 等. 考虑时间相关性的电动汽车全生命周期碳排放量预测[J]. 储能科学与技术, 2022, 11(7): 2206-2212.
|
|
WU G H, LI H S, LI F, et al. Research on the prediction of carbon emissions in the whole life cycle of electric vehicles considering time correlation[J]. Energy Storage Science and Technology, 2022, 11(7): 2206-2212.
|
17 |
吕思, 卫志农, 马骏超, 等. 基于多目标优化的电力-交通系统协同运行分析[J]. 电力系统自动化, 2022, 46(12): 98-106.
|
|
LYU S, WEI Z N, MA J C, et al. Analysis on coordinated power-transportation system operation based on multi-objective optimization[J]. Automation of Electric Power Systems, 2022, 46(12): 98-106.
|
18 |
YANG Z C, YANG F, MIN H D, et al. Energy management programming to reduce distribution network operating costs in the presence of electric vehicles and renewable energy sources[J]. Energy, 2023, 263: 125695.
|
19 |
PARSONS G R, HIDRUE M K, KEMPTON W, et al. Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms[J]. Energy Economics, 2014, 42: 313-324.
|
20 |
潘樟惠, 高赐威, 刘顺桂. 基于需求侧放电竞价的电动汽车充放电调度研究[J]. 电网技术, 2016, 40(4): 1140-1146.
|
|
PAN Z H, GAO C W, LIU S G. Research on charging and discharging dispatch of electric vehicles based on demand side discharge bidding[J]. Power System Technology, 2016, 40(4): 1140-1146.
|
21 |
侯慧, 王逸凡, 赵波, 等. 价格与激励需求响应下电动汽车负荷聚集商调度策略[J]. 电网技术, 2022, 46(4): 1259-1269.
|
|
HOU H, WANG Y F, ZHAO B, et al. Electric vehicle aggregator dispatching strategy under price and incentive demand response[J]. Power System Technology, 2022, 46(4): 1259-1269.
|
22 |
陈海瑞, 米增强, 贾雨龙, 等. 计及电价不确定的电动汽车聚合商区间调度策略[J]. 电测与仪表, 2021, 58(12): 24-30.
|
|
CHEN H R, MI Z Q, JIA Y L, et al. Interval scheduling strategy for electric vehicle aggregator considering uncertainty of electricity price[J]. Electrical Measurement & Instrumentation, 2021, 58(12): 24-30.
|