储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 702-713.doi: 10.19799/j.cnki.2095-4239.2024.0840

• 储能系统与工程 • 上一篇    下一篇

基于变密度拓扑优化的液冷板散热流道设计

杨智颖(), 卢伟(), 姚嘉, 程阳, 伍德坚, 文海龙   

  1. 桂林电子科技大学机电工程学院,广西 桂林 541004
  • 收稿日期:2024-09-09 修回日期:2024-09-27 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 卢伟 E-mail:1448032174@qq.com;13796359587@163.com
  • 作者简介:杨智颖(2000—),男,硕士研究生,研究方向为动力电池热管理,E-mail:1448032174@qq.com
  • 基金资助:
    国家自然科学基金(52165010);桂林电子科技大学高层次人才科研启动基金(UF23045Y)

Liquid-cooled plate cooling channels design based on variable density topology optimization

Zhiying YANG(), Wei LU(), Jia YAO, Yang CHENG, Dejian WU, Hailong WEN   

  1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Received:2024-09-09 Revised:2024-09-27 Online:2025-02-28 Published:2025-03-18
  • Contact: Wei LU E-mail:1448032174@qq.com;13796359587@163.com

摘要:

电动汽车的热管理以液冷散热为主,针对传统蛇形液冷板散热流道存在均温性差、压降高等不足,尝试应用拓扑优化技术进行流道设计,以满足电池包高温安全性和均温性的要求。首先,基于Comsol变密度拓扑优化的2D仿真,以设计域平均温度最低为目标函数,流道体积分数作为约束条件,通过变量控制法获得设计域中流道分布规律,采用亥姆霍兹过滤器进行敏度过滤,得到新型树状拓扑优化流道的设计。将2D拓扑仿真结果转化为实际流道几何模型,并通过3D打印技术制备树状拓扑流道散热板。采用热流耦合的仿真模拟技术,进行响应面实验设计,研究流道体积分数A、入口温度B、流量C对散热性能的交互影响,通过实验验证了拓扑流道的实际温控能力,证实了仿真模拟的高预测精度。利用非支配遗传算法的优化迭代分析,获取最优帕累托前沿解,即A=0.3、B=20 ℃、C=10 L/min时具有最佳散热性能。拓扑流道最优方案与蛇形流道相比,进出口压降从4863 Pa下降到822 Pa,下降83%;电池模组最高温度从27.88 ℃下降到27.21 ℃,下降2.4%;温差从5.7 ℃下降到4.95 ℃,下降13.2%。以上结果均满足了电池模组驱动耐久工况下的测试要求。本工作验证了树状拓扑优化流道进行电池模组热管理的优势,为电池热管理系统的设计提供了有效的方案。

关键词: 电池包热管理, 变密度拓扑优化, 树状流道设计, 响应面优化, 非支配遗传算法

Abstract:

The thermal management of electric vehicles predominantly relies on liquid cooling. Recognizing the limitations of traditional serpentine liquid cold plate, characterized by poor temperature uniformity and high voltage drop, this study explores the application of topology optimization technology to design the flow channels. The objective is to develop a cooling system that effectively addresses the critical requirements of high-temperature safety and uniform temperature distribution within the battery pack. First, based on the 2D simulation of Comsol variable density topology optimization, by taking the lowest average temperature in the design domain as the objective function and the flow channel volume fraction as the constraint condition, the flow channel distribution law in the design domain was obtained using a variable control method. Sensitivity filtering was implemented using the Helmholtz filter, resulting in the design of a novel tree-like topology optimization channel. Furthermore, the 2D topology simulation results were transformed into the actual channel geometry, and the tree-like topology runner heat sink was prepared using 3D printing technology. The experimental design of the response surface was carried out using the simulation technology of heat flux coupling, and the interaction effect of the volume fraction A, inlet temperature B, and flow rate C on the heat dissipation performance of the runner was studied. The actual temperature control ability of the topological flow channel was verified by repeated group experiments, and this confirmed the high prediction accuracy of the simulation. The optimal Pareto front solution was obtained using the optimization iterative analysis of the non-dominant genetic algorithm: A = 0.3, B = 20 ℃, and C = 10 L/min had the best heat dissipation performance. Compared with the serpentine channel, the optimal topological flow channel reduces the inlet and outlet pressure drop from 4863 Pa to 822 Pa, a decrease of 490%. The maximum temperature of the battery module decreased from 27.88℃ to 27.21 ℃, a decrease of 2.4%; The temperature difference decreased from 5.7 ℃ to 4.95 ℃, a decrease of 13.2%; The above results meet the experimental test requirements under the driven-durability condition of the battery module. In this study, the advantages of tree-topology optimized flow channels for battery module thermal management are proposed and verified, and an effective scheme is provided for the design of a battery thermal management system.

Key words: battery pack thermal management, variable density topology optimization, tree-like flow channel design, response surface optimization, non-dominated genetic algorithms

中图分类号: