Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 879-892.doi: 10.19799/j.cnki.2095-4239.2023.0723
• Energy Storage System and Engineering • Previous Articles Next Articles
Ang LI(), Xiaomeng LI(), Jinghao LI, Jinyi ZHANG
Received:
2023-10-16
Revised:
2023-11-10
Online:
2024-03-28
Published:
2024-03-28
Contact:
Xiaomeng LI
E-mail:liang@spic.com.cn;lixiaomeng@spic.com.cn
CLC Number:
Ang LI, Xiaomeng LI, Jinghao LI, Jinyi ZHANG. A stack model of the redox flow battery analysis and computing program[J]. Energy Storage Science and Technology, 2024, 13(3): 879-892.
Table 1
Input properties of computing a stack interior current distribution"
序号 | 参数 | 含义 |
---|---|---|
1 | Redox Flow System | ALL V |
2 | Electrolyte Condition | 22 ℃/4 mol H2SO4 |
3 | Current Density mA/cm2 | 200 |
4 | Electrode Width/cm | 100 |
5 | Electrode Length/cm | 20 |
6 | Number of Sub-stacks | 4 |
7 | Number of Cells in Each Sub-stack | 25 |
8 | Channel Length/mm | 800 |
9 | Channel Width/mm | 10 |
10 | Channel Depth/mm | 4 |
11 | Manifold Thickness/mm | 5 |
12 | Manifold Sectional Area/mm2 | 2800 |
13 | Branch Length/mm | 500 |
14 | Branch Dia./mm | 30 |
15 | Main Tube Length/mm | 500 |
16 | Main Tube Dia./mm | 80 |
Table 2
Input properties of stack flow resistance computation"
序号 | 常数 | 含义 |
---|---|---|
1 | Electrolyte Condition | ALL V |
2 | Unit Area Flow Rate/[mL/(cm2·min)] | 2 |
3 | Flow Factor | 1 |
6 | Number of 90° Elbows in Channel | 1 |
7 | Number of 180° Elbows in Channel | 2 |
8 | Number T-Joint in Channel | 1 |
9 | Number of 90° Elbows in Branch | 1 |
10 | Number of 180° Elbows in Branch | 0 |
11 | Channel Surface Roughness mm | 0.009 |
12 | Branch Surface Roughness mm | 0.007 |
13 | Height Between Inlet & Outlet mm | 400 |
14 | Number of Sub-stacks | 4 |
15 | Number of Cells in Each Sub-stack | 25 |
16 | Electrode Thickness/mm | 3 |
17 | Porosity/% | 98 |
18 | Darcy Permeability/m2 | 1.5e-10 |
19 | Channel Length/mm | 800 |
20 | Channel Width/mm | 10 |
21 | Channel Depth/mm | 4 |
22 | Branch Length/mm | 500 |
23 | Branch Dia./mm | 30 |
Table 4
Input properties of computing free convection heat loss"
序号 | 参数 | 含义 |
---|---|---|
1 | Number of Cells | 100 |
2 | Number of Thermal Plates | 4 |
3 | Stack Height/mm | 480 |
4 | Stack Width/mm | 1200 |
5 | Cell Thickness/mm | 5 |
6 | End Plate Thickness/mm | 15 |
7 | End Plate Height/mm | 500 |
8 | End Plate Width/mm | 1300 |
9 | Lateral Wall Thickness/mm | 15 |
10 | Top & Bottom Wall Thickness/mm | 15 |
11 | Thermal Plate Thickness/mm | 15 |
12 | Insulation Thickness (Front Face)/mm | 30 |
13 | Insulation Thickness (Other Face)/mm | 20 |
14 | Stack Inside Temperature/℃ | 40 |
15 | Air Temperature/℃ | 10 |
1 | 陈海生, 于振华, 刘为, 等. 储能产业研究白皮书2023[R]. 北京: 中关村储能产业技术联盟, 2023. |
2 | 杨继云. 全钒液流电池建模与控制系统设计[D]. 南宁: 广西大学, 2012. |
YANG J Y. Modeling of vanadium redox flow battery and design of control system[D]. Nanning: Guangxi University, 2012. | |
3 | 余姝媛, 叶强. 基于高效紧凑设计的液流电池管路优化方法[J]. 电源技术, 2018, 42(11): 1694-1697. |
YU S Y, YE Q. A pipeline optimization method for flow battery systems based on efficient and compact design[J]. Chinese Journal of Power Sources, 2018, 42(11): 1694-1697. | |
4 | 廖斯达, 宋士强, 张剑波, 等. 液流电池理论与技术——全钒液流电池的数值模拟分析[J]. 储能科学与技术, 2014, 3(4): 395-405. |
LIAO S D, SONG S Q, ZHANG J B, et al. Simulation of the effects of electrode parameters on all-vanadium redox flow battery performance[J]. Energy Storage Science and Technology, 2014, 3(4): 395-405. | |
5 | YE Q, HU J, CHENG P, et al. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery[J]. Journal of Power Sources, 2015, 296: 352-364. |
6 | 沈海峰, 朱新坚, 曹弘飞, 等. 全钒液流电池动态建模[J]. 储能科学与技术, 2018, 7(1): 135-140. |
SHEN H F, ZHU X J, CAO H F, et al. Dynamic modeling of all-vanadium flow battery[J]. Energy Storage Science and Technology, 2018, 7(1): 135-140. | |
7 | BARTON J L, BRUSHETT F R. A one-dimensional stack model for redox flow battery analysis and operation[J]. Batteries, 2019, 5(1): 25. |
8 | 胡静, 叶强. 多堆串联液流电池系统中电池数目的优化分配[J]. 电源技术, 2016, 40(12): 2419-2421, 2427. |
HU J, YE Q. Optimal cell number allocation in multi-stack redox flow battery system[J]. Chinese Journal of Power Sources, 2016, 40(12): 2419-2421, 2427. | |
9 | CHEN Y S, HO S Y, CHOU H W, et al. Modeling the effect of shunt current on the charge transfer efficiency of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2018, 390: 168-175. |
10 | 李蓓, 郭剑波, 陈继忠, 等. 液流储能电池系统支路电流的建模与仿真分析[J]. 中国电机工程学报, 2011, 31(27): 1-7. |
LI B, GUO J B, CHEN J Z, et al. Modelling and simulating of shunt current in redox flow battery[J]. Proceedings of the CSEE, 2011, 31(27): 1-7. | |
11 | FRANK M W. Fluid Mechanics[M]. McGraw-Hill, 2015: 325-367. |
12 | SHAH R K, LONDON A L. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data[M]. New York: Academic Press, 1978 |
13 | Neutrium. Native Dynamics[EB/OL]. [2022-02-05]. https://neutrium.net/fluid-flow/pressure-loss-from-fittings-3k-method/. |
14 | 熊静. 钒电池机械失效以及力学对电化学作用机制数值分析[D]. 合肥: 中国科学技术大学, 2020. |
XIONG J. Numerical analysis of mechanical failure and mechanism of mechanical effect on electrochemistry of vanadium battery[D]. Hefei: University of Science and Technology of China, 2020. | |
15 | WEI Z B, ZHAO J Y, SKYLLAS-KAZACOS M, et al. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery[J]. Journal of Power Sources, 2014, 260: 89-99. |
16 | MICHAEL J M, HOWARD N S, BRUCE R M, et al. Introduction to thermal systems engineering:Thermodynamics, fluid mechanics and heat transfer[M]. New York:John Wiley & Sons, Inc., 2003: 342-356, 438-446. |
17 | MICHAEL J M, HOWARD N S, BRUCE R M, et al. Introduction to thermal systems engineering:Thermodynamics, fluid mechanics and heat transfer[M]. New York: John Wiley & Sons, Inc., 2003: 409-446. |
18 | ALAN S T. Tables of thermodynamic and transport properties of fluids[M]. Christchurch: University of Canterbury, 2012: 43. |
19 | 李昂, 李晓蒙, 杨林, 等. 液流电池封装压力计算[J]. 储能科学与技术, 2022, 11(2): 609-614. |
LI A, LI X M, YANG L, et al. Compression force calculation of redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. | |
20 | 秦大同, 谢里阳. 现代机械设计手册-第1卷[M]. 北京: 化学工业出版社, 2011: 180. |
QIN D T, XIE L Y. Modern handbook of mechanical design[M]. Beijing: Chemical Industry Press, 2011: 180. |
[1] | Jia LIU, Zhiqiang MA, Guangchen LIU, Jundong GAO, Hongxun LI. Predicting the residual useful life of power batteries based on the GRUU-TCN ensemble under multiscale decomposition [J]. Energy Storage Science and Technology, 2024, 13(3): 1009-1018. |
[2] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[3] | Aifang ZHANG, Bangda WEI, Zhuohao LI, Yang YANG, Tianqiang YANG, Jun YAO, Jie ZHANG, Fei LIU, Haomiao LI, Kangli WANG, Kai JIANG. Research progress on modeling and SOC online estimation of vanadium redox-flow batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1036-1049. |
[4] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[5] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[6] | Yaning ZHU, Zhendong ZHANG, Lei SHENG, Long CHEN, Zehua ZHU, Linxiang FU, Qing BI. Thermal runaway experiment of 21700 lithium-ion battery under different health conditions [J]. Energy Storage Science and Technology, 2024, 13(3): 971-980. |
[7] | Ran SUN, Jianbo WANG, Yanzhao MA, Xiaoke ZHANG, Huaizhong HU. Adaptive control strategy for primary frequency regulation for new energy storage stations based on reinforcement learning [J]. Energy Storage Science and Technology, 2024, 13(3): 858-869. |
[8] | Tianchen ZHAO, Gong ZHANG, Yunfei ZHANG, Shihao HOU, Tingting WANG. Technical and economic research on the capacity of supply assurance for pumped-storage systems under the target of “dual carbon” [J]. Energy Storage Science and Technology, 2024, 13(3): 1059-1073. |
[9] | Yutian QIAO, Yongfeng LIU, Yongshuai YU, Lu ZHANG, Shengzhuo YAO, Pucheng PEI. Effect of temperature and humidity variations on the output performance of automotive fuel cells [J]. Energy Storage Science and Technology, 2024, 13(3): 870-878. |
[10] | Wen PEI. Preparation and thermal properties analysis of phase change energy storage materials in marine logistics [J]. Energy Storage Science and Technology, 2024, 13(3): 844-846. |
[11] | Chunshan HE, Ziyang WANG, Bin YAO. Experimental study of the thermal runaway characteristics of lithium iron phosphate batteries for energy storage under various discharge powers [J]. Energy Storage Science and Technology, 2024, 13(3): 981-989. |
[12] | Zhifeng SONG, Weifeng DUAN, Lei MA. Simulation of power storage power regulation system supported by ultracapacitor technology [J]. Energy Storage Science and Technology, 2024, 13(2): 623-625. |
[13] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. |
[14] | Xiaoyun SUN, Deren WANG, Lin MENG, Zhongshan REN, Sensen LI. Design and optimization of cell structure and negative electrode materials for high areal capacity zinc-bromine flow batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 370-380. |
[15] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||