Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 872-886.doi: 10.19799/j.cnki.2095-4239.2021.0133
Previous Articles Next Articles
Qi YAN1,2(), Yuanqi LAN1,3(), Wenjiao YAO1(), Yongbing TANG1,2,3()
Received:
2021-03-31
Revised:
2021-04-15
Online:
2021-05-05
Published:
2021-04-30
Contact:
Wenjiao YAO,Yongbing TANG
E-mail:qi.yan@siat.ac.cn;yq.lan@siat.ac.cn;wj.yao@siat.ac.cn;tangyb@siat.ac.cn
CLC Number:
Qi YAN, Yuanqi LAN, Wenjiao YAO, Yongbing TANG. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886.
1 | JI B, HE H, YAO W, et al. Recent advances and perspectives on calcium-ion storage: Key materials and devices[J]. Advanced Materials, 2021, 33(2): doi: 10.1002/adma.202005501. |
2 | ZHANG L J, WANG H T, ZHANG X, et al. A review of emerging dual-ion batteries: Fundamentals and recent advances[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010958. |
3 | 李泓. 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术, 2015, 4(3): 306-317. |
LI H. Fundamental scientific aspects of lithium ion batteries (XV)——Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4(3): 306-317. | |
4 | ZHOU X, LIU Q, JIANG C, et al. Strategies towards low-cost dual-ion batteries with high performance[J]. Angewandte Chemie, 2020, 59(10): 3802-3832. |
5 | NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18: 252-264. |
6 | JIN T, LI H, ZHU K, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemial Society Review, 2020, 4: 2342-2377. |
7 | PADHI A K, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144: doi: 10.1149/1.1837571. |
8 | WANG J, SUN X. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy Environment Science, 2012, 5: 5163-5185. |
9 | ANDERSSON A S, KALSKA B, HAGGSTROM L, et al. Lithium extraction/insertion in LiFePO4: An X-ray diffraction and Mössbauer spectroscopy study[J]. Solid State Ionics, 2000, 130: 41-52. |
10 | KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193. |
11 | CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128. |
12 | 王甲泰, 赵段, 马莲花, 等. 锂离子电池正极材料磷酸铁锂的研究进展[J]. 无机盐工业, 2020, 52(4): 18-22. |
WANG J T, ZHAO D, MA L H, et al. Research progress of LiFePO4 cathode materials for Li-ion battery[J]. Inorganic Chemicals Industry, 2020, 52(4): 18-22. | |
13 | SUSANTYOKO R A, ALKINDI T S, KANAGARAJ A B, et al. Performance optimization of freestanding MWCNT-LiFePO4 sheets as cathodes for improved specific capacity of lithium-ion batteries[J]. RSC Advances, 2018, 8(30): 16566-16573. |
14 | HERLE P S, ELLIS B, COOMBS N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Materials, 2004, 3(3): 147-152. |
15 | MA Z P, FAN Y Q, SHAO G J, et al. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2937-2943. |
16 | OKADA S, SAWA S, YOSHINO A. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries[J]. Journal of Power Sources, 2011, 97: 430-432. |
17 | HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508. |
18 | ZHU C B, SONG K P, VAN AKEN P A, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014, 14(4): 2175-2180. |
19 | ZHANG X H, RUI X H, CHEN D, et al. Na3V2(PO4)3: An advanced cathode for sodium-ion batteries[J]. Nanoscale, 2019, 11(6): 2556-2576. |
20 | LI H, JIN T, CHEN X, et al. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode[J]. Advanced Energy Materials, 2018, 8: doi:10.1002/aenm.20 1801418. |
21 | WANG J, WANG Y, SEO D H, et al. A high-energy NASICON-type cathode material for Na-ion batteries[J]. Advanced Energy Materials, 2020, 10: doi: 10.1002/adma.201903968. |
22 | ZHOU W D, XUE L G, LYU X, et al. NaxMV(PO4)3 (M=Mn, Fe, Ni) structure and properties for sodium extraction[J]. Nano Letters, 2016, 16(12): 7836-7841. |
23 | GOVER R K B, BRYAN A, BURNS P, et al. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3[J]. Solid State Ionics, 2006, 177(17/18): 1495-1500. |
24 | LIU Z G, HU Y Y, DUNSTAN M T, et al. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3[J]. Chemistry of Materials, 2014, 26(8): 2513-2521. |
25 | BIANCHINI M, BRISSET N, FAUTH F, et al. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study[J]. Chemistry of Materials, 2014, 26(14): 4238-4247. |
26 | SONG W, JI X, WU Z, et al. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries[J]. Journal of Power Sources, 2014, 256: 258-263. |
27 | BIANCHINI M, FAUTH F, BRISSET N, et al. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction[J]. Chemistry of Materials, 2015, 27(8): 3009-3020. |
28 | YI H, LING M, XU W, et al. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties[J]. Nano Energy, 2018, 47: 340-352. |
29 | 易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369. |
YI H M, LV Z Q, ZHANG H M, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. | |
30 | LING M, LI F, YI H, et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6: 24201-24209. |
31 | GABELICA-ROBERT M. The pyrophosphate NaFeP2O7: A cage structure [J]. Journal of Solid State Chemistry, 1982, 45: 389-395. |
32 | BARPANDA P, YE T, NISHIMURA S I, et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemical Communication, 2012, 24: 116-119. |
33 | KIM H, PARK I, SEO D H, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: Combined first principles calculations and experimental study[J]. Journal of the American Chemical Society, 2012, 134(25): 10369-10372. |
34 | LIM S Y, KIM H, CHUNG J, et al. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery[J]. PNAS, 2014, 111(2): 599-604. |
35 | HE G, HUQ A, KAN W H, et al. Β-NaVOPO4 obtained by a low-temperature synthesis process: A new 3.3 V cathode for sodium-ion batteries[J]. Chemistry of Materials, 2016, 28(5): 1503-1512. |
36 | PARK Y U, SEO D H, KIM H, et al. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1-xPO4)2F1+2x (0≤x≤1): Combined first-principles and experimental sudy[J]. Advanced Functianl Materials, 2014, 24: 4603-4614. |
37 | BARPANDA P, LIU G D, LING C D, et al. Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries[J]. Chemistry of Materials, 2013, 25(17): 3480-3487. |
38 | 曹鑫鑫, 周江, 潘安强, 等. 钠离子电池磷酸盐正极材料研究进展[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905018. |
CAO X X, ZHOU J, PAN A Q, et al. Recent advances in phosphate cathode materials for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905018. | |
39 | WU X, ZHONG G, YANG Y. Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction[J]. Journal of Power Sources, 2016, 327: 666-674. |
40 | CHIHARA K, KATOGI A, KUBOTA K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries[J]. Chemiacal Communications, 2017, 53: 5208-5211. |
41 | BARPANDA P, OYAMA G, NISHIMURA S, et al. A 3.8 V earth-abundant sodium battery electrode[J]. Nature Communications, 2014, 5: doi:10.1038/ncomms5358. |
42 | NISHIMURA S I, SUZUKI Y, LU J C, et al. High-temperature neutron and X-ray diffraction study of fast sodium transport in alluaudite-type sodium iron sulfate[J]. Chemistry of Materials, 2016, 28(7): 2393-2399. |
43 | CHEN M, CORTIE D, HU Z, et al. A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201800944. |
44 | JUNGERS T, MAHMOUD A, MALHERBE C, et al. Sodium iron sulfate alluaudite solid solution for Na-ion batteries: Moving towards stoichiometric Na2Fe2(SO4)3[J]. Journal of Materials Chemistry A, 2019, 7: 8226-3823. |
45 | ARAUJO R B, CHAKRABORTY S, BARPANDA P, et al. Na2M2(SO4)3(M=Fe, Mn, Co and Ni): Towards high-voltage sodium battery applications[J]. Physical Chemistry Chemical Physics, 2016, 18(14): 9658-9665. |
46 | WONG L L, CHEN H M, ADAMS S. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+δ)Fe(2-δ/2)(SO4)3[J]. Physica Chemistry Chemical Physics, 2015, 17: 9186-9193. |
47 | DWIBEDI D, ARAUJO R B, CHAKRABORTY S, et al. Na2.44Mn1.79(SO4)3: A new member of the alluaudite family of insertion compounds for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(36): 18564-18571. |
48 | WEI S, MORTEMARD B, OYAMA G, et al. Synthesis and electrochemistry of Na2.5(Fe1-yMny)1.75(SO4)3 solid solutions for Na-ion batteries[J]. Chemelectrochemistry, 2016, 3: 209-213. |
49 | 马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(Ⅶ)——正极材料[J]. 储能科学与技术, 2014, 3(1): 53-65. |
MA C, LYU Y C, LI H. Fundamental scientific aspects of lithium batteries (Ⅶ)—Positive electrode materials[J]. Energy Storage Science and Technology, 2014, 3(1): 53-65. | |
50 | RECHAM N, CHOTARD J N, DUPONT L, et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries[J]. Nature Materials, 2010, 9(1): 68-74. |
51 | BARPANDA P, ATI M, MELOT B C, et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure[J]. Nature Materials, 2011, 10: 772-779. |
52 | RECHAM N, ROUSSE G, SOUGRATI M T, et al. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes[J]. Chemistry of Materials, 2012, 24(22): 4363-4370. |
53 | DONG J, LIAO J, HE X, et al. Graphene encircled KFeSO4F cathode composite for high energy density potassium-ion batteries[J]. Chemical Communications, 2020, 56: 10050-10053. |
54 | KIM H, SEO D H, BIANCHINI M, et al. A new strategy for high-voltage cathodes for K-ion batteries: Stoichiometric KVPO4F[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201801591. |
55 | DRISCOLL L L, KENDRICK E, KNIGHT K S, et al. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O(M=Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x(M=Mn, Co and Ni) through selenate incorporation[J]. Journal of Solid State Chemistry, 2018, 258: 64-71. |
56 | SUN M L, ROUSSE G, ABAKUMOV A M, et al. An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries[J]. Journal of the American Chemical Society, 2014, 136(36): 12658-12666. |
57 | DING Y L, WEN Y R, VAN AKEN P A, et al. Jarosite nanosheets fabricated via room-temperature synthesis as cathode materials for high-rate lithium ion batteries[J]. Chemistry of Materials, 2015, 27(8): 3143-3149. |
58 | DOMPABLO A M, ARMAND M, TARASCON J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications, 2006, 8: 1292-1298. |
59 | LARSSON P, AHUJA R, NYTEN A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4[J]. Electrochemistry Communications, 2006, 8: 797-800. |
60 | ARMSTRONG A R, KUGANATHAN N, ISLAM M S, et al. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries[J]. Journal of the American Chemical Society, 2011, 133(33): 13031-13035. |
61 | MASESE T, TASSEL C, ORIKASA Y, et al. Crystal structural changes and charge compensation mechanism during two lithium extraction/insertion between Li2FeSiO4 and FeSiO4[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10206-10211. |
62 | LOFTAGER S, GARCÍA-LASTRA J M, VEGGE T. A density functional theory study of the ionic and electronic transport mechanisms in LiFeBO3 battery electrodes[J]. The Journal of Physical Chemistry C, 2016, 120(33): 18355-18364. |
63 | DONG Y Z, ZHAO Y M, SHI Z D, et al. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material[J]. Electrochimica Acta, 2008, 53(5): 2339-2345. |
64 | YAO W J, ARMSTRONG A R, ZHOU X, et al. An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox[J]. Nature Communicaitons, 2019, 10: doi: 10.1038/s41467-019-11077-0. |
65 | YAO W J, SOUGRATI M T, HOANG K, et al. Reinvestigation of Na2Fe2(C2O4)3·2H2O: An iron-based positive electrode for secondary batteries[J]. Chemistry of Materials, 2017, 29(21): 9095-9101. |
66 | HE H Y, YAO W J, TUNMEE S, et al. An iron-based polyanionic cathode for potassium storage with high capacity and excellent cycling stability[J]. Journal of Materials Chemistry A, 2020, 8(18): 9128-9136. |
67 | CAI J H, LAN Y Q, HE H Y, et al. Synthesis, structure, and electrochemical properties of some cobalt oxalates[J]. Inorganic Chemistry, 2020, 59(23): 16936-16943. |
68 | HE X L, ZHANG X Y, JI B F, et al. Tilting and twisting in a novel perovzalate, K3NaMn(C2O4)3[J]. Chemical Communications, 2021, 57(20): 2567-2570. |
69 | WU N Z, ZHOU X L, KIADKHUNTHOD P, et al. K-ion battery cathode design utilising trigonal prismatic ligand field[J]. Advanced Materials, 2021, doi: 10.1002/adma.202101788. |
70 | YAO W J, CLARK L, XIA M J, et al. Diverse family of layered frustrated magnets with tailorable interlayer interactions[J]. Chemistry of Materials, 2017, 29(16): 6616-6620. |
71 | JI B, YAO W, ZHENG Y, et al. A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15044-y. |
72 | BEN YAHIA H, ESSEHLI R, AMIN R, et al. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2[J]. Journal of Power Sources, 2018, 382: 144-151. |
73 | CHEN H L, HAO Q, ZIVKOVIC O, et al. Sidorenkite (Na3MnPO4CO3): A new intercalation cathode material for Na-ion batteries[J]. Chemistry of Materials, 2013, 25(14): 2777-2786. |
74 | LU J C, NISHIMURA S I, YAMADA A. Polyanionic solid-solution cathodes for rechargeable batteries[J]. Chemistry of Materials, 2017, 29(8): 3597-3602. |
75 | LAN Y Q, YAO W J, HE X L, et al. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage[J]. Angewandte Chemie, 2020, 59: 9255-9262. |
76 | SONG T, YAO W, KIADKHUNTHOD P, et al. A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage[J]. Angewandte Chemie, 2020, 59(2): 740-745. |
77 | WANG W K, JI B F, YAO W J, et al. A novel low-cost and environment-friendly cathode with large channels and high structure stability for potassium-ion storage[J]. Science China Materials, 2021, 64(5): 1047-1057. |
78 | SARAVANAN K, MASON C W, RUDOLA A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries[J]. Advanced Energy Materials, 2013, 3(4): 444-450. |
79 | SULTANA I, RAHMAN M M, MATETI S, et al. Approaching reactive KFePO4 phase for potassium storage by adopting an advanced design strategy[J]. Batteries & Supercaps, 2020, 3(5): 450-455. |
80 | LIN T C, YAN Y, KING S C, et al. Fast-charging cathodes from polymer-templated mesoporous LiVPO4F[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33775-33784. |
81 | DU J, JIAO L, WU Q, et al. Synthesis and characterization of Li2FeP2O7/C nanocomposites as cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2013, 103: 219-225. |
82 | PARK W B, HAN S C, PARK C, et al. KVP2O7 as a robust high-energy cathode for potassium-ion batteries: Pinpointed by a full screening of the inorganic registry under specific search conditions[J]. Advanced Energy Materials, 2018, 8(13): doi: 10.1002/aenm.201703099. |
83 | REYNAUD M, ATI M, MELOT B C, et al. Li2Fe(SO4)2 as a 3.83 V positive electrode material[J]. Electrochemistry Communications, 2012, 21: 77-80. |
84 | LI S Y, SONG X S, KUAI X X, et al. A nanoarchitectured Na6Fe5(SO4)8/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage[J]. Journal of Materials Chemistry A, 2019, 7(24): 14656-14669. |
85 | KIM M, KIM D, LEE W, et al. New class of 3.7 V Fe-based positive electrode materials for Na-ion battery based on cation-disordered polyanion framework[J]. Chemistry of Materials, 2018, 30(18): 6346-6352. |
86 | BARPANDA P, OYAMA G, LING C D, et al. Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries[J]. Chemistry of Materials, 2014, 26(3): 1297-1299. |
87 | WANG F X, LIU S S, JIANG Q K, et al. K2Fe3(SO4)3(OH)2(H2O)2: A new high-performance hydroxysulfate cathode material for alkali metal ion batteries[J]. Journal of Power Sources, 2020, 452: doi: 10.1016/j.jpowsour.2020.227835. |
88 | PRAMANIK A, BARDFORD A, LEE S, et al. Na2Fe(C2O4)(HPO4): A promising new oxalate-phosphate based mixed polyanionic cathode for Li/Na ion batteries[J]. Journal of Physics Materials, 2021, 4: doi: 10.1088/2515-7639/abe5f9. |
89 | 潘雯丽, 关文浩, 姜银珠. 聚阴离子型钠离子电池正极材料的研究进展[J]. 物理化学学报, 2020, 36(5): 63-74. |
WENLI P, WENHAO G, YINZHU J. Research advances in polyanion-type cathodes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 63-74. | |
90 | PAN Q G, ZHENG Y P, TONG Z P, et al. Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202103052. |
91 | YANG R, ZHANG F, LEI X, et al. Pseudocapacitive Ti-doped niobium pentoxide nanoflake structure design for a fast kinetics anode toward a high-performance Mg-ion-based dual-ion battery[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47539-47547. |
92 | YANG K, LIU Q, ZHENG Y, et al. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries[J]. Angewandte Chemie, 2021, 60(12): 6326-6332. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[4] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[5] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[6] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[7] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[8] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[9] | Chunlin YU, Xudong CHEN, Toshio MIYAGAWA, Hui SUN, Xingwang ZHANG, Lige TONG. Precursor with special structure for improving the performance of the ternary cathode material of Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1000-1007. |
[10] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[13] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[14] | Linhui JIA, Zejia GAI, Moxi LI, Huagen LIANG. Research progress of MOFs and their derivatives as cathode catalysts for Li-O2 batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 503-510. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||