Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2117-2126.doi: 10.19799/j.cnki.2095-4239.2021.0178
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhuo XU1,2,3(), Lili ZHENG1,2,3, Bing CHEN1,2,3, Tao ZHANG1,2,3, Xiuling CHANG1,2,3, Shouli WEI1,2,3, Zuoqiang DAI1,2,3()
Received:
2021-04-22
Revised:
2021-06-05
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126.
Table 2
Enhancement of 6 Li amount in each component after cycling for LLZO (5%)-PEO (LiTFSI), LLZO (20%)-PEO (LiTFSI), LLZO (50%)-PEO (LiTFSI), and LLZO (50%)-PEO (LiTFSI) (50%)-TEGDME"
6Li增加量/% | LLZO | 界面 | 分解LLZO | LiTFSI |
---|---|---|---|---|
LLZO(5%)-PEO(LiTFSI) | — | — | — | 23.2 |
LLZO(20%)-PEO(LiTFSI) | 2.3 | 1.1 | 10.6 | 21.2 |
LLZO(50%)-PEO(LiTFSI) | 27.2 | 6.3 | 1.2 | 8.7 |
1 | ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445. |
2 | 汪勋. PEO基复合固态电解质的制备及表征[D]. 西安: 西安工业大学, 2019. |
WANG X. Preparation and characterization of PEO-based solid composite electrolyte[D]. Xi'an: Xi'an Technological University, 2019. | |
3 | CHENG Z W, LIU T, ZHAO B, et al. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 34: 388-416. |
4 | 金英敏, 李栋, 贾政刚, 等. 用于全固态锂电池的有机-无机复合电解质[J]. 原子与分子物理学报, 2020, 37(6): 958-973. |
JIN Y M, LI D, JIA Z G, et al. Organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Journal of Atomic and Molecular Physics, 2020, 37(6): 958-973. | |
5 | 阳敦杰. LLZO/PEO复合固体电解质的制备及其与金属锂负极的界面特性研究[D]. 武汉: 武汉理工大学, 2018. |
YANG D J. Preparation LLZO/PEO composite solid electrolyte and the characteristics of interface with lithium metal[D]. Wuhan: Wuhan University of Technology, 2018. | |
6 | 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18. |
HUANG Z, YANG J, CHEN X T, et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1): 1-18. | |
7 | LI Y T, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357. |
8 | ZEIER W G. Structural limitations for optimizing garnet-type solid electrolytes: A perspective[J]. Dalton Transactions, 2014, 43(43): 16133-16138. |
9 | 许阳阳, 李全国, 梁成都, 等. 硫化物固体电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 649-658. |
XU Y Y, LI Q G, LIANG C D, et al. Research progress of solid electrolytes[J]. Energy Storage Science and Technology, 2016, 5(5): 649-658. | |
10 | 闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020, 52(7): 22-25. |
YAN Y J. Research status and prospect of solid electrolyte for lithium ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(7): 22-25. | |
11 | 陈立坤, 胡懿, 马家宾, 等. Li+电池固态聚合物电解质研究进展[J]. 化学工业与工程, 2020, 37(1): 2-16. |
CHEN L K, HU Y, MA J B, et al. Research progress of solid polymer electrolytes for lithium-ion batteries[J]. Chemical Industry and Engineering, 2020, 37(1): 2-16. | |
12 | 彭翔, 黄楷, 孙志杰, 等. 聚合物复合固体电解质材料研究进展[J]. 中国材料进展, 2020, 39(3): 191-199, 190. |
PENG X, HUANG K, SUN Z J, et al. Progress on the composite solid polymer electrolytes[J]. Materials China, 2020, 39(3): 191-199, 190. | |
13 | DIRICAN M, YAN C Y, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science and Engineering, 2019, 136: 27-46. |
14 | 杜奥冰, 柴敬超, 张建军, 等. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648. |
DU A B, CHAI J C, ZHANG J J, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. | |
15 | MAUGER A, ARMAND M, JULIEN C M, et al. Challenges and issues facing lithium metal for solid-state rechargeable batteries[J]. Journal of Power Sources, 2017, 353: 333-342. |
16 | ZHU X Q, WANG K, XU Y N, et al. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes[J]. Energy Storage Materials, 2021, 36: 291-308. |
17 | LU W Z, XUE M Z, ZHANG C M. Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries[J]. Energy Storage Materials, 2021, 39: 108-129. |
18 | ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. |
19 | CHEN S J, WANG J Y, ZHANG Z H, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387: 72-80. |
20 | 宋宁. 固态电池Li7La3Zr2O12/PEO复合电解质膜的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
SONG N. Preparation and properties of Li7La3Zr2O12/PEO composite electrolyte membrane for solid-state batteries[D]. Harbin: Harbin Institute of Technology, 2019. | |
21 | ZAMAN W, HORTANCE N, DIXIT M B, et al. Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23914-23921. |
22 | 胡志雄. 掺杂锂镧钛氧固态电解质的制备及其性能研究[D]. 深圳: 深圳大学, 2019. |
HU ZhiXiong. Preparation and properties of doped lithium lanthanum titanium oxide solid electrolyte[D]. Shenzhen: Shenzhen University, 2019. | |
23 | 朱朋辉. 基于PEO基固态聚合物复合电解质的制备及其在锂离子电池中的应用[D]. 镇江: 江苏大学, 2019. |
ZHU P H. Preparation of solid polymer composite electrolyte based on PEO and its application in lithium-ion battery[D]. Zhenjiang, China: Jiangsu University, 2019. | |
24 | ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. |
25 | LI J, CHEN H W, SHEN Y B, et al. Covalent interfacial coupling for hybrid solid-state Li ion conductor[J]. Energy Storage Materials, 2019, 23: 277-283. |
26 | 徐先华. PEO基复合固态聚合物电解质的制备、结构表征及导电增强机制[D]. 长沙: 中南大学, 2005. |
XU X H. Preparation, structure characterization and conductive enhancement mechanism of PEO based composite solid polymer electrolyte[D]. Changsha: Central South University, 2005. | |
27 | WANG W M, YI E, FICI A J, et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121(5): 2563-2573. |
28 | 虞鑫润, 马君, 牟春博, 等. 高锂离子电导的有机-无机复合电解质的渗流结构设计[J/OL]. 物理化学学报, 2022, 38(3): doi: 10.3866/PKU.WHXB201912061. |
YU X R, MA J, MU C B, et al. Percolation structure design of organic inorganic composite electrolyte with high lithium ion conductivity[J/OL]. Acta Physico-Chimica Sinica, 2022, 38(3): doi: 10.3866/PKU.WHXB201912061. | |
29 | LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. |
30 | YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21773-21780. |
31 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2021, 37(11): doi: 10.3866/PKU.WHXB202007070. |
WANG H, AN H W, SHAN H M, et al.Research progress of all solid state battery interface[J]. Acta Physico-Chimica Sinica, 2021, 37(11): doi: 10.3866/PKU.WHXB202007070. | |
32 | ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
33 | XU L H, LI G B, GUAN J X, et al. Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100767. |
34 | LI H Y, LIU W, YANG X D, et al. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition[J]. Chemical Engineering Journal, 2021, 408: doi: 10.1016/j.cej.2020.127254. |
35 | ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074. |
36 | BI Z J, MU S, ZHAO N, et al. Cathode supported solid lithium batteries enabling high energy density and stable cyclability[J]. Energy Storage Materials, 2021, 35: 512-519. |
37 | FU K K, GONG Y H, LIU B Y, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659. |
38 | JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials,2020, 10(12): 1903376.1-1903376.10. |
39 | YAN C Y, ZHU P, JIA H, et al. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries[J]. Energy Storage Materials, 2020, 26: 448-456. |
40 | LI D, CHEN L, WANG T S, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078. |
41 | HOU T Z, YANG G, RAJPUT N N, et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation[J]. Nano Energy, 2019, 64: doi: 10.1016/j.nanoen.2019.103881. |
42 | CHEN L, LI W X, FAN L Z, et al. Solid-state lithium batteries: Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): doi: 10.1002/adfm.201970196. |
43 | WANG Z W, ZHANG P Y, JIA Y Y, et al. Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte[J]. Journal of Alloys and Compounds, 2021, 853: doi: 10.1016/j.jallcom.2020.157340. |
[1] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[2] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[3] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[4] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[5] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[6] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[7] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[8] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
[9] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[10] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[11] | JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
[12] | DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. |
[13] | LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1. Research progress on sodium ion solid-state electrolytes [J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. |
[14] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[15] | SHI Kai, AN Decheng, HE Yanbing, LI Baohua, KANG Feiyu. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||