Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2615-2625.doi: 10.19799/j.cnki.2095-4239.2023.0082
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jiaxing YANG(), Hengyun ZHANG(), Yidong XU
Received:
2023-02-20
Revised:
2023-03-14
Online:
2023-08-05
Published:
2023-08-23
Contact:
Hengyun ZHANG
E-mail:yoogating@163.com;zhanghengyun@sues.edu.cn
CLC Number:
Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model[J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625.
Table 4
Electrochemical model parameters at normal temperature"
参数 | 负极 | 隔膜 | 正极 |
---|---|---|---|
厚度/μm | 72.5 | 32 | 69.5 |
颗粒半径r/μm | 7 | 5 | |
固相体积分数 εs | 0.5386 | 0.6348 | |
电解液体积分数 εl | 0.2807 | 0.43 | 0.3061 |
固相最大锂离子浓度cs, max/(mol/m3) | 28607 | 49388 | |
固相初始锂离子浓度cs, 0/(mol/m3) | 0.84cs, max, ne | 0.279cs, max, pe | |
电解液参考锂离子浓度cl, 0=cref /(mol/m3) | 1000 | 1000 | 1000 |
传递系数 αne, αpe | 0.5 | 0.5 | |
Bruggeman因子Brug | 1.5 | 1.5 | 1.5 |
锂离子固相扩散活化能EaR/(J/mol) | 68025.7 | 9976.8 | |
锂离子固相参考扩散系数Ds, ref /(m2/s) | 1.4523 | 5 | |
等效固相电导率 σ /(S/m) | 100 | 3.8 | |
转移数t+ | 0.363 | ||
电池径向热导率 λxy /[W/(m·K)] | 1.63 | ||
电池轴向热导率 λz /[W/(m·K)] | 36.96 | ||
电池密度 ρ /(kg/m3) | 2510 | ||
比定压热容cp /[J/(kg·K)] | 1028 |
Table 6
Heat production ratio of each component with different discharge rates at normal and subzero temperature"
电池组件 | 室温 | 低温 | |||||||
---|---|---|---|---|---|---|---|---|---|
0.5 C | 1 C | 2 C | 3 C | 0.5 C | 1 C | 2 C | 3 C | ||
负极 | 19.56% | 29.02% | 26.3% | 23.73% | 69.34% | 65.13% | 36.58% | 29.96% | |
正极 | 59.26% | 45.96% | 34.08% | 28.36% | 20.98% | 20.81% | 38.73% | 39.85% | |
电解液 | 0.95% | 0.93% | 0.52% | 0.58% | 0.27% | 0.92% | 0.78% | 0.96% | |
集流体 | 20.23% | 24.08% | 39.11% | 47.33% | 9.41% | 13.13% | 23.91% | 29.23% |
1 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
2 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
3 | THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes[J]. Journal of the Electrochemical Society, 2003, 150(2): doi: 10.1149/1.1531194. |
4 | HU X S, LI S B, PENG HUEI. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367. |
5 | BABA N, YOSHIDA H, NAGAOKA M, et al. Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model[J]. Journal of Power Sources, 2014, 252: 214-228. |
6 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
7 | 李夔宁, 谢运成, 谢翌, 等. 基于电化学热耦合模型的富镍锂离子电池产热分析[J]. 储能科学与技术, 2021, 10(3): 1153-1162. |
LI K N, XIE Y C, XIE Y, et al. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model[J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. | |
8 | LYU P Z, HUO Y T, QU Z G, et al. Investigation on the thermal behavior of Ni-rich NMC lithium-ion battery for energy storage[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng.2019.114749. |
9 | DU S L, LAI Y Q, AI L A, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510. |
10 | 张志超, 郑莉莉, 杜光超, 等. 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130. |
ZHANG Z C, ZHENG L L, DU G C, et al. Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130. | |
11 | 韦雪晴, 邓海鹏, 周宇, 等. 锂离子电池组的三维电化学-热耦合仿真分析[J]. 储能科学与技术, 2022, 11(12): 3965-3977. |
WEI X Q, DENG H P, ZHOU Y, et al. Three-dimensional electrochemical-thermal coupling simulation analysis of lithium ion battery pack[J]. Energy Storage Science and Technology, 2022, 11(12): 3965-3977. | |
12 | FANG R Q, GE H, WANG Z H, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb83a. |
13 | LIU S B, ZHANG H Y, XU X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: doi: 10.1016/j.est.2021.102446. |
14 | FARAG M, SWEITY H, FLECKENSTEIN M, et al. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications[J]. Journal of Power Sources, 2017, 360: 618-633. |
15 | LI J E, CHENG Y, AI L H, et al. 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration[J]. Journal of Power Sources, 2015, 293: 993-1005. |
16 | LI H H, SAINI A, LIU C Y, et al. Electrochemical and thermal characteristics of prismatic lithium-ion battery based on a three-dimensional electrochemical-thermal coupled model[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.102976. |
17 | 云凤玲. 高比能量锂离子动力电池热性能及电化学-热耦合行为的研究[D]. 北京: 北京有色金属研究总院, 2016. |
18 | BAHIRAEI F, GHALKHANI M, FARTAJ A, et al. A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications[J]. Applied Thermal Engineering, 2017, 125: 904-918. |
19 | DONG T, PENG P, JIANG F M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018, 117: 261-272. |
20 | VALO̸EN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2005, 152(5): doi: 10.1149/1.1872737. |
21 | DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903. |
22 | WU W, XIAO X R, HUANG X S. The effect of battery design parameters on heat generation and utilization in a Li-ion cell[J]. Electrochimica Acta, 2012, 83: 227-240. |
23 | XU X B, ZHANG H Y, LIU S B, et al. Surrogate models for lithium-ion battery heat generation based on orthogonal experiments by eliminating external wire connection effect[J]. Applied Thermal Engineering, 2022, 213: doi: 10.1016/j.applthermaleng.2022.118655. |
24 | 吴青余, 张恒运, 李俊伟. 校准量热法测量锂电池比热容和生热率[J]. 汽车工程, 2020, 42(1): 59-65. |
WU Q Y, ZHANG H Y, LI J W. Calibrated calorimetry for measuring the specific heat capacity and heat generation rate of lithium-ion battery[J]. Automotive Engineering, 2020, 42(1): 59-65. | |
25 | JI Y, ZHANG Y C, WANG C Y. Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society, 2013, 160(4): doi: 10.1149/2.047304jes. |
[1] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[2] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[3] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[4] | Yun DI, Zhengzhu ZHOU, Huihong DANG, Zhihao GE. Modeling and verification of electric-thermal coupling in batteries based on ECM [J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. |
[5] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[6] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[7] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[8] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[9] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[10] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[11] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[12] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[13] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[14] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[15] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||