Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3630-3641.doi: 10.19799/j.cnki.2095-4239.2024.0398
• Energy Storage Test: Methods and Evaluation • Previous Articles
Yuguang XIE1(), Jinzhong LI1, Wenhao ZOU2(), Lei MAO2()
Received:
2024-05-06
Revised:
2024-06-06
Online:
2024-10-28
Published:
2024-10-30
Contact:
Wenhao ZOU, Lei MAO
E-mail:95662479@qq.com;wenhaozou@mail.ustc.edu.cn;leimao82@ustc.edu.cn
CLC Number:
Yuguang XIE, Jinzhong LI, Wenhao ZOU, Lei MAO. Prediction of remaining useful life for lithium-ion battery using recurrence plot analysis[J]. Energy Storage Science and Technology, 2024, 13(10): 3630-3641.
Table 1
The detailed structure parameters of MSCNN constructed in this paper"
层名称 | 具体参数及输出尺寸 |
---|---|
输入层 | (time_steps, 224, 224) |
卷积层1 | 卷积核-11×11,通道-48,输出-(48, 55, 55) |
最大池化层1 | 卷积核-3×3,步长-2,输出-(48, 27, 27) |
卷积层2 | 卷积核-5×5,通道-128,输出-(128, 27, 27) |
最大池化层2 | 卷积核-3×3,步长-2,输出-(128, 13, 13) |
卷积层3 | 卷积核-3×3,通道-192,输出-(192, 13, 13) |
卷积层4 | 卷积核-3×3,通道-192,输出-(192, 13, 13) |
卷积层5 | 卷积核-3×3,通道-128,输出-(128, 13, 13) |
最大池化层3 | 卷积核-3×3,步长-2,输出-(128, 6, 6) |
全连接层 | (128×6×6, 1024) |
全连接层 | (1024, 1024) |
全连接层 | (1024, 1) |
Table 3
Effect of different number of history cycles on the accuracy of MSCNN model prediction results"
名称 | 循环数 | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
Cell-2-1 | 5.43 | 6.88 | 5.83 | 8.29 | 5.40 | 10.67 | 6.44 | 10.90 |
Cell-2-2 | 5.59 | 7.48 | 4.13 | 5.34 | 4.72 | 5.64 | 4.39 | 5.56 |
Cell-2-3 | 3.89 | 5.36 | 3.62 | 4.94 | 3.94 | 4.83 | 4.73 | 5.80 |
Cell-2-4 | 4.08 | 5.16 | 5.38 | 5.82 | 3.45 | 4.45 | 5.15 | 6.19 |
Cell-2-5 | 9.36 | 11.56 | 6.23 | 7.94 | 5.45 | 6.95 | 8.10 | 9.32 |
Cell-2-6 | 4.70 | 6.11 | 4.48 | 5.68 | 4.73 | 6.41 | 5.39 | 7.93 |
Cell-2-7 | 8.78 | 11.21 | 10.13 | 13.14 | 9.39 | 11.90 | 10.29 | 12.10 |
Cell-2-8 | 8.39 | 11.44 | 7.58 | 10.21 | 6.99 | 9.31 | 8.92 | 10.62 |
平均值 | 6.28 | 8.15 | 5.92 | 7.67 | 5.51 | 7.52 | 6.68 | 8.55 |
Table 5
MAE and RMSE results of each comparison method"
名称 | 所提方法 | DWM-Trans | 1D-MSCNN | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
Cell-2-1 | 5.40 | 10.67 | 6.90 | 9.67 | 12.02 | 15.40 |
Cell-2-2 | 4.72 | 5.64 | 5.59 | 6.51 | 9.39 | 11.50 |
Cell-2-3 | 3.94 | 4.83 | 3.85 | 4.71 | 6.54 | 7.83 |
Cell-2-4 | 3.45 | 4.45 | 3.39 | 4.54 | 6.15 | 7.34 |
Cell-2-5 | 5.45 | 6.95 | 4.12 | 4.80 | 10.90 | 12.36 |
Cell-2-6 | 4.73 | 6.41 | 4.21 | 5.35 | 6.96 | 8.16 |
Cell-2-7 | 9.39 | 11.90 | 13.17 | 16.13 | 20.39 | 25.04 |
Cell-2-8 | 6.99 | 9.31 | 12.58 | 15.16 | 15.16 | 18.56 |
平均值 | 5.51 | 7.52 | 6.73 | 8.36 | 10.94 | 13.27 |
1 | 朱晓庆, 王震坡, WANG Hsin, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091. |
ZHU X Q, WANG Z P, WANG Hsin, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091. | |
2 | CHEN K, LIAO Q, LIU K, et al. Capacity degradation prediction of lithium-ion battery based on artificial bee colony and multi-kernel support vector regression[J]. Journal of Energy Storage, 2023, 72: 108160. DOI: 10.1016/j.est.2023.108160. |
3 | 于志雨. 基于多维特征提取的电池剩余使用寿命预测[D]. 哈尔滨: 哈尔滨工业大学, 2022. DOI: 10.27061/d.cnki.ghgdu.2022.000702. |
YU Z Y. Prediction of battery remaining service life based on multi-dimensional feature extraction[D]. Harbin: Harbin Institute of Technology, 2022. DOI: 10.27061/d.cnki.ghgdu.2022.000702. | |
4 | 朱洪涛. 基于模型与数据驱动融合的锂电池寿命预测算法研究[D]. 成都: 电子科技大学, 2022. DOI: 10.27005/d.cnki.gdzku.2022. 001795. |
ZHU H T. Research on lithium battery life prediction algorithm based on model and data-driven fusion[D]. Chengdu: University of Electronic Science and Technology of China, 2022. DOI: 10.27005/d.cnki.gdzku.2022.001795. | |
5 | 李晋, 王青松, 孔得朋, 等. 锂电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki. 2095-4239.2023.0252. |
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. | |
6 | 刘泓成. 基于改进神经网络的锂电池剩余使用寿命预测研究[D]. 长春: 吉林大学, 2021. DOI: 10.27162/d.cnki.gjlin.2021.004960. |
LIU H C. Research on prediction of residual service life of lithium battery based on improved neural network[D]. Changchun: Jilin University, 2021. DOI: 10.27162/d.cnki.gjlin.2021.004960. | |
7 | HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. DOI: 10.1016/j.jpowsour.2011.08.040. |
8 | 刘若桐, 李建林, 吕喆, 等. 退役动力电池应用潜力分析[J]. 电气技术, 2021, 22(8): 1-9. DOI: 10.3969/j.issn.1673-3800.2021.08.001. |
LIU R T, LI J L, LYU Z, et al. Application potential analysis of decommissioned power batteries[J]. Electrical Engineering, 2021, 22(8): 1-9. DOI: 10.3969/j.issn.1673-3800.2021.08.001. | |
9 | 姜久春, 高洋, 张彩萍, 等. 电动汽车锂离子动力电池健康状态在线诊断方法[J]. 机械工程学报, 2019, 55(20): 60-72, 84. DOI: 10.3901/JME.2019.20.060. |
JIANG J C, GAO Y, ZHANG C P, et al. Online diagnostic method for health status of lithium-ion battery in electric vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 60-72, 84. DOI: 10.3901/JME.2019.20.060. | |
10 | 段文献. 锂电池状态估计与剩余使用寿命预测的研究[D]. 长春: 吉林大学, 2023. DOI: 10.27162/d.cnki.gjlin.2023.007572. |
DUAN W X. Research on state estimation and residual life prediction of lithium-ion battery[D]. Changchun: Jilin University, 2023. DOI: 10.27162/d.cnki.gjlin.2023.007572. | |
11 | 卢婷, 杨文强. 锂电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki.2095-4239.2019.0263. |
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki.2095-4239.2019.0263. | |
12 | 杨杰, 王婷, 杜春雨, 等. 锂电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64. DOI: 10.12028/j.issn.2095-4239.2018.0143. |
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64. DOI: 10.12028/j.issn.2095-4239.2018.0143. | |
13 | 钱广俊, 韩雪冰, 卢兰光, 等. 锂电池系统均衡策略研究进展[J]. 机械工程学报, 2022, 58(24): 145-162. DOI: 10.3901/JME.2022. 24.145. |
QIAN G J, HAN X B, LU L G, et al. Advances in lithium-ion battery system equalization strategy research[J]. Journal of Mechanical Engineering, 2022, 58(24): 145-162. DOI: 10.3901/JME.2022.24.145. | |
14 | 顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085. |
GU J P, JIANG L, ZHANG X S, et al. Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085. | |
15 | 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219. DOI: 10.16081/j.epae.202110030. |
LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219. DOI: 10.16081/j.epae.202110030. | |
16 | 薛瑾. 锂电池健康状态估计及剩余使用寿命预测研究[D]. 长沙: 湖南大学, 2022. DOI: 10.27135/d.cnki.ghudu.2022.001885. |
XUE J. Research on health state estimation and remaining service life prediction of lithium battery[D]. Changsha: Hunan University, 2022. DOI: 10.27135/d.cnki.ghudu.2022.001885. | |
17 | WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173: 134-140. DOI: 10.1016/j.apenergy.2016.04.057. |
18 | MA G J, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network[J]. Applied Energy, 2019, 253: 113626. DOI: 10.1016/j.apenergy.2019.113626. |
19 | ZHANG W, LI X, LI X. Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation[J]. Measurement, 2020, 164: 108052. DOI: 10.1016/j.measurement.2020.108052. |
20 | ECKMANN J P, KAMPHORST S O, RUELLE D. Recurrence plots of dynamical systems[M]// World Scientific Series on Nonlinear Science Series A: World Scientific, 1995: 441-445. DOI: 10.1142/9789812833709_0030. |
21 | MARWAN N, CARMEN ROMANO M, THIEL M, et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438(5/6): 237-329. DOI: 10.1016/j.physrep.2006.11.001. |
22 | ZAHANGIR ALOM M, TAHA T M, YAKOPCIC C, et al. The history began from AlexNet: A comprehensive survey on deep learning approaches[J]. ArXiv e-Prints, 2018: arXiv: 1803.01164. DOI: 10.48550/arXiv.1803.01164. |
23 | ZOU W H, LU Z Q, HU Z Y, et al. Remaining useful life estimation of bearing using deep multiscale window-based transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3514211. DOI: 10.1109/TIM.2023.3268453. |
24 | LU Z Q, LIANG L Y, ZHU J, et al. Rotating machinery fault diagnosis under multiple working conditions via a time-series transformer enhanced by convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3533611. DOI: 10.1109/TIM.2023.3318707. |
25 | CHRISTOPH B. Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford, South East England, UK: University of Oxford, 2017 |
26 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in neural information processing systems, 2017: 5998-6008. |
27 | YAO D C, LI B Y, LIU H C, et al. Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit[J]. Measurement, 2021, 175: 109166. DOI: 10.1016/j.measurement.2021.109166. |
[1] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[2] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[3] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[4] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[5] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[6] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[7] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[8] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[9] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
[10] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[11] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[12] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[13] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[14] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[15] | Jiamu YANG, Yuxin CHEN, Cheng LIAN, Zhi XU, Honglai LIU. Flow field analysis and structural optimization of coating die with electrode slurry [J]. Energy Storage Science and Technology, 2024, 13(4): 1109-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||