Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1995-2009.doi: 10.19799/j.cnki.2095-4239.2024.0101
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2024-02-01
Revised:
2024-03-01
Online:
2024-06-28
Published:
2024-06-26
Contact:
Baoquan LIU
E-mail:liubq@sust.edu.cn
CLC Number:
Baoquan LIU, Xiaoyu CAO. Accurate typical gas detection of lithium battery in early thermal runaway period[J]. Energy Storage Science and Technology, 2024, 13(6): 1995-2009.
Table 1
Error and average precision improvement of 8 experimental data groups"
电池 种类 | 荷电 状态 | 注入气体 浓度 | 加算法前 误差最大值 | 加算法前 误差最小值 | 加算法后 误差最大值 | 加算法后 误差最小值 | 提升精度 平均值 |
---|---|---|---|---|---|---|---|
LFP | 100% SOC | 100 mL/m3 H2 30 mL/m3 CO | 120 | 25 | 29 | 5 | 5.37% |
46 | 13 | 37 | 4 | 2.7% | |||
150 mL/m3 H2 45 mL/m3 CO | 162 | 31 | 46 | 9 | 9.46% | ||
52 | 18 | 27 | 10 | 4.38% | |||
50% SOC | 120 mL/m3 H2 20 mL/m3 CO | 156 | 17 | 34 | 4 | 8.4% | |
58 | 23 | 42 | 14 | 6.56% | |||
180 mL/m3 H2 30 mL/m3 CO | 145 | 44 | 29 | 8 | 8.92% | ||
41 | 8 | 23 | 1 | 6.75% | |||
NMC | 100% SOC | 40 mL/m3 H2 70 mL/m3 CO | 127 | 25 | 46 | 5 | 10.04% |
84 | 11 | 37 | 3 | 2.62% | |||
80 mL/m3 H2 140 mL/m3 CO | 112 | 35 | 45 | 15 | 9.36% | ||
87 | 31 | 42 | 15 | 3.46% | |||
50% SOC | 50 mL/m3 H2 100 mL/m3 CO | 106 | 15 | 41 | 5 | 9% | |
104 | 19 | 42 | 8 | 3.4% | |||
75 mL/m3 H2 150 mL/m3 CO | 115 | 30 | 48 | 10 | 9.8% | ||
91 | 16 | 39 | 9 | 3.17% |
Appendix
Table 1 Cross interference data of CO electrochemical sensor (Model: ME2-CO-ϕ14×5)"
气体种类 | 气体浓度 | 传感器信号 | 交叉干扰系数 |
---|---|---|---|
硫化氢 | 100 mL/m3 | 0 mL/m3 | 0% |
乙烯 | 100 mL/m3 | 80 mL/m3 | 80% |
一氧化氮 | 35 mL/m3 | 6 mL/m3 | 17.14% |
二氧化氮 | 5 mL/m3 | 0 mL/m3 | 0% |
乙醇 | 100 mL/m3 | 0 mL/m3 | 0% |
氯气 | 10 mL/m3 | 1 mL/m3 | 10% |
二氧化硫 | 20 mL/m3 | 0.6 mL/m3 | 3% |
氢气 | 500 mL/m3 | 43 mL/m3 | 8.6% |
氨气 | 50 mL/m3 | 1 mL/m3 | 2% |
一氯甲烷 | 5 mL/m3 | 0 mL/m3 | 0% |
环氧乙烷 | 10 mL/m3 | 0 mL/m3 | 0% |
苯 | 100 mL/m3 | 1.5 mL/m3 | 1.5% |
丙酮 | 100 mL/m3 | 3.5 mL/m3 | 3.5% |
甲醇 | 200 mL/m3 | 0 mL/m3 | 0% |
1 | 陈银, 肖如, 崔怡琳, 等. 储能电站锂离子电池火灾早期预警与抑制技术研究综述[J]. 电气工程学报, 2022, 17(4): 72-87. |
CHEN Y, XIAO R, CUI Y L, et al. Research review on early warning and suppression technology of lithium-ion battery fire in energy storage power station[J]. Journal of Electrical Engineering, 2022, 17(4): 72-87. | |
2 | 劳力. 高比能锂离子动力电池系统充电策略及热失控安全研究[D]. 合肥: 中国科学技术大学, 2020. |
LAO L. Study on charging strategy and thermal runaway safety of high specific energy lithium ion power battery system[D]. Hefei: University of Science and Technology of China, 2020. | |
3 | 马敬轩, 宋宇航, 石爽, 等. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. |
MA J X, SONG Y H, SHI S, et al. Early warning of the thermal runaway of liquid-cooled LiFePO4 battery module based on the sudden change of air-pressure signal detection[J]. Energy Storage Science and Technology, 2023, 12(7): 2246-2255. | |
4 | HE D R, SUN J L, LI Y, et al. Thermal runaway warning based on safety management system of lithium iron phosphate battery for energy storage[C]// 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). IEEE, 2020: 577-582. |
5 | 谭则杰, 周晓燕, 徐振恒, 等. 锂离子电池热失控监测与预警的气敏技术研究进展[J]. 储能科学与技术, 2023, 12(11): 3456-3470. |
TAN Z J, ZHOU X Y, XU Z H, et al. Research progress of gas-sensing technologies for the monitoring and early warning of thermal runaway in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3456-3470. | |
6 | 董明, 刘王泽宇, 李晓枫, 等. 基于电化学阻抗谱的锂电池过充电阻抗特性与检测方法研究[J]. 中国电机工程学报, 2024, 44(9): 3388-3399. |
DONG M, LIU W Z Y, LI X F, et al. Study on overcharge impedance characteristics and detection methods of lithium batteries based on electrochemical impedance spectroscop[J]. Proceedings of the CSEE, 2024, 44(9): 3388-3399. | |
7 | 靳欣, 张建茹, 王其钰, 等. 混合固液锂离子电池的热失控行为研究[J]. 储能科学与技术, 2024, 13(1): 48-56. |
JIN X, ZHANG J R, WANG Q Y, et al. Study on thermal runaway of hybrid solid-liquid batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. | |
8 | 于天剑, 冯恩来, 伍珣. 基于数据驱动的动车组镍镉电池记忆效应消除策略研究[J/OL]. 铁道科学与工程学报: 1-14[2023-10-11]. https://doi.org/10.19713/j.cnki.43-1423/u.T20231236. |
YU T J, FENG E L, WU X. Research on data-driven strategies for eliminating the memory effect of nickel cadmium batteries in high-speed trains[J/OL]. Journal of Railway Science and Engineering: 1-14[2023-10-11]. https://doi.org/10.19713/j.cnki.43-1423/u.T20231236. | |
9 | SONG Y H, LYU N W, SHI S, et al. Safety warning for lithium-ion batteries by module-space air-pressure variation under thermal runaway conditions[J]. Journal of Energy Storage, 2022, 2022(56): 105911. |
10 | 李奎杰, 楼平, 管敏渊, 等. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912. |
LI K J, LOU P, GUAN M Y, et al. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway[J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. | |
11 | 徐成善, 鲁博瑞, 张梦启, 等. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
XU C S, LU B R, ZHANG M Q, et al. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin[J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. | |
12 | 张斌, 吴楠, 赵希强, 等. 基于红外热成像技术的动力电池组热失控监测系统[J]. 电池工业, 2019, 23(4): 171-175, 185. |
ZHANG B, WU N, ZHAO X Q, et al. Thermal out-of-control monitoring system for power batteries based on infrared thermal imaging technology[J]. Chinese Battery Industry, 2019, 23(4): 171-175, 185. | |
13 | 苏同伦. 基于声信号的锂电池储能舱安全预警及故障定位方法研究[D]. 郑州: 郑州大学, 2021. |
SU T L. Research on safety warning and fault location of lithium battery energy storage cabin based on acoustic signal[D]. Zhengzhou: Zhengzhou University, 2021. | |
14 | FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222. |
15 | YUAN Q F, ZHAO F G, WANG W D, et al. Overcharge failure investigation of lithium-ion batteries[J]. Electrochimica Acta, 2015, 178: 682-688. |
16 | 朱艳丽, 徐艺博, 王聪杰, 等. 不同荷电状态磷酸铁锂电池热失控温度与产气特性分析[J]. 安全与环境学报, 2024, 24(1): 143-151. |
ZHU Y L, XU Y B, WANG C J, et al. Analysis of thermal runaway temperature and gas production characteristics of lithium iron phosphate batteries with different states of charge[J]. Journal of Safety and Environment, 2024, 24(1): 143-151. | |
17 | WANG L, MA Y, GAO Y, et al. Study of gas evolution behavior of lithium-ion battery via in situ FT-IR spectroscopy[J]. Journal of Electroanalytical Chemistry, 2023, 16(7): 109-112. |
18 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 8(4): 1714-1729. |
19 | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. |
20 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Early detection for Li-ion batteries thermal runaway based on gas sensing[J]. ECS Transactions, 2019, 89(1): 85-97. |
21 | 吴静云, 郭鹏宇, 张淼, 等. 基于气体检测的锂电池热失控预警研究进展[J]. 消防科学与技术, 2022, 41(2): 161-164. |
WU J Y, GUO P Y, ZHANG M, et al. Research progress on the warning of the thermal runaway of lithium-ion battery based on the gas detection[J]. Fire Science and Technology, 2022, 41(2): 161-164. | |
22 | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. |
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. | |
23 | 孙宇峰, 黄行九, 刘伟, 等. 电化学CO气体传感器及其敏感特性[J]. 传感器技术, 2004, 23(7): 14-17. |
SUN Y F, HUANG X J, LIU W, et al. CO electrochemical gas sensor and it's sensitive character[J]. Journal of Transducer Technology, 2004, 23(7): 14-17. | |
24 | 陆熊. 基于电化学传感器的气体检测仪的设计[D]. 上海: 上海交通大学, 2015. |
LU X. Design of A gas detection system based on electrochemical sensors[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
25 | 刘辰旸. 用于呼气检测的光激发半导体气体传感器[D]. 大连: 大连理工大学, 2022. |
LIU C Y. UV-activated semiconductor gas sensor for exhaled breath detection[D]. Dalian: Dalian University of Technology, 2022. | |
26 | 曹利峰, 贾博文, 蔡宏忱, 等. 一种电化学传感器交叉干扰的补偿方法与实践[J]. 中国环保产业, 2021(7): 64-72. |
CAO L F, JIA B W, CAI H C, et al. Compensation method and practice for cross interference of electrochemical gas sensors[J]. China Environmental Protection Industry, 2021(7): 64-72. | |
27 | 蒋学悟, 刘海韬, 魏海明. 电化学气体传感器测量干扰排除的探讨[C]//中国土木工程学会城市燃气分会应用专业委员会2010年年会论文集. 中国土木工程学会, 2010: 182-185. |
28 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
29 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. |
30 | 赵春朋. 受限空间三元锂离子电池热失控燃爆危险性研究[D]. 合肥: 中国科学技术大学, 2021. |
ZHAO C P. Study on the risk of thermal runaway explosion of ternary lithium ion battery in confined space[D]. Hefei: University of Science and Technology of China, 2021. | |
31 | 秦鹏. 磷酸铁锂电池热失控产热产气规律及火焰主控机制研究[D]. 合肥: 中国科学技术大学, 2022. |
QIN P. The investigation on the heat-gas regularity and flame controlling mechanism of lithium iron phosphate battery thermal runaway[D]. Hefei: University of Science and Technology of China, 2022. |
[1] | Xuxu TANG, Ting XU, Deren CHU. Study on the failure mechanism and thermal safety of nickel-cobalt-manganese ternary lithium-ion cells after float-charging at different voltages [J]. Energy Storage Science and Technology, 2024, 13(6): 2044-2053. |
[2] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[3] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[4] | Zhiyou MAO, Xiaoyu NING, Peipei ZHANG, Bei ZHANG, Jiayuan XIANG. Effect of separators on thermal runaway performance for Li-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1154-1158. |
[5] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[6] | Yaning ZHU, Zhendong ZHANG, Lei SHENG, Long CHEN, Zehua ZHU, Linxiang FU, Qing BI. Thermal runaway experiment of 21700 lithium-ion battery under different health conditions [J]. Energy Storage Science and Technology, 2024, 13(3): 971-980. |
[7] | Chunshan HE, Ziyang WANG, Bin YAO. Experimental study of the thermal runaway characteristics of lithium iron phosphate batteries for energy storage under various discharge powers [J]. Energy Storage Science and Technology, 2024, 13(3): 981-989. |
[8] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[9] | Zhaoyang LI, Dinghong LIU, Yanyan ZHAO, Man CHEN, Qikai LEI, Peng PENG, Lei LIU. Nail penetration characteristics of high-energy-density lithium-ion pouch cell [J]. Energy Storage Science and Technology, 2024, 13(1): 57-71. |
[10] | Xin JIN, Jianru ZHANG, Qiyu WANG, Rui ZHANG, Bitong WANG, Zhongyang ZHANG, Hailong YU, Xiqian YU, Hong LI. Study on thermal runaway of hybrid solid-liquid batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. |
[11] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[12] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[13] | Jingxuan MA, Yuhang SONG, Shuang SHI, Nawei LYU, Kangyong YIN, Guirong WANG, Kaiyuan DU, Yang JIN. Early warning of the thermal runaway of liquid-cooled LiFePO4 battery module based on the sudden change of air-pressure signal detection [J]. Energy Storage Science and Technology, 2023, 12(7): 2246-2255. |
[14] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[15] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||