1 |
RUGGERI I, MARTIN J, WOHLFAHRT-MEHRENS M, et al. Interfacial kinetics and low-temperature behavior of spheroidized natural graphite particles as anode for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2022, 26(1): 73-83. DOI: 10.1007/s10008-021-04974-2.
|
2 |
YANG Y S, CHEN Y F, TAN L L, et al. Rechargeable LiNi0.65Co0.15Mn0.2O2||Graphite batteries operating at -60 ℃[J]. Angewandte Chemie International Edition, 2022, 61(42): DOI: 10.1002/anie.202209619.
|
3 |
LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): DOI: 10.1002/adfm.202200796.
|
4 |
WEN Y, HE K, ZHU Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033. DOI: 10.1038/ncomms5033.
|
5 |
SHIM J H, LEE S H. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 475-483. DOI: 10.1016/j.jpowsour.2016.05.094.
|
6 |
GUO B D, LIU Q, CHEN E D, et al. Controllable N-doping of graphene[J]. Nano Letters, 2010, 10(12): 4975-4980. DOI: 10.1021/nl103079j.
|
7 |
WANG M M, WANG J R, XIAO J C, et al. Introducing a pseudocapacitive lithium storage mechanism into graphite by defect engineering for fast-charging lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16279-16288. DOI: 10.1021/acsami.2c02169.
|
8 |
CHANG X Q, SUN N, ZHOU H Y, et al. Soft carbon-coated bulk graphite for improved potassium ion storage[J]. Chinese Chemical Letters, 2023, 34(3): 107312. DOI: 10.1016/j.cclet.2022.03.035.
|
9 |
LI H Q, ZHOU H S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future[J]. Chemical Communications, 2012, 48(9): 1201-1217. DOI: 10.1039/c1cc14764a.
|
10 |
OKA H, KADOURA H, TAKAHASHI N T, et al. Effect of amorphous carbon coating on the formation of solid electrolyte interphase and electrochemical properties of a graphite electrode[J]. Journal of Power Sources, 2022, 543: DOI: 10.1016/j.jpowsour.2022.231850.
|
11 |
LU H Y, CHEN X Y, JIA Y L, et al. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries[J]. Nano Energy, 2019, 64: DOI: 10.1016/j.nanoen.2019.103903.
|
12 |
ZHOU J H, MA K N, LIAN X Y, et al. Eliminating graphite exfoliation with an artificial solid electrolyte interphase for stable lithium-ion batteries[J]. Small, 2022, 18(15): DOI: 10.1002/smll.202107460.
|
13 |
ZHANG M, HE Y X, XU H J, et al. Nb2O5 nanoparticles embedding in graphite hybrid as a high-rate and long-cycle anode for lithium-ion batteries[J]. Rare Metals, 2022, 41(3): 814-821. DOI: 10.1007/s12598-021-01863-5.
|
14 |
LIU W H, WANG X P, LIU J S, et al. Graphite-based composite anodes with C-O-Nb heterointerfaces enable fast lithium storage[J]. ChemSusChem, 2023, 16(10): DOI: 10.1002/cssc.202300067.
|
15 |
DU P, FAN X M, ZHANG B, et al. The lithiophobic-to-lithiophilic transition on the graphite towards ultrafast-charging and long-cycling lithium-ion batteries[J]. Energy Storage Materials, 2022, 50: 648-657. DOI: 10.1016/j.ensm.2022.05.056.
|
16 |
SONG Z H, LI H, LIU W, et al. Ultrafast and stable Li-(de)intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport[J]. Advanced Materials, 2020, 32(22): DOI: 10.1002/adma.202001001.
|
17 |
LIU Y C, RUSSO P A, MONTORO L A, et al. Recent developments in Nb-based oxides with crystallographic shear structures as anode materials for high-rate lithium-ion energy storage[J]. Battery Energy, 2023, 2(1): DOI: 10.1002/bte2.20220037.
|
18 |
CAO D P, YAO Z G, LIU J J, et al. H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries[J]. Energy Storage Materials, 2018, 11: 152-160. DOI: 10.1016/j.ensm.2017.10.005.
|