Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3687-3696.doi: 10.19799/j.cnki.2095-4239.2025.0395
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:2025-04-23
Revised:2025-05-16
Online:2025-10-28
Published:2025-10-20
Contact:
Guoqing GONG
E-mail:1240747961@qq.com;gonggy@126.com
CLC Number:
Wenbin BAO, Guoqing GONG. Phase-field study of lithium dendrite growth in solid-state batteries: Effects of nanoskeletons and artificial separator morphology optimization[J]. Energy Storage Science and Technology, 2025, 14(10): 3687-3696.
Table 1
Phase field-related parameters"
| 参数名 | 符号 | 值 | 参考文献 |
|---|---|---|---|
| 界面迁移率 | 1×10-6 m3/(J·s) | [ | |
| 电化学反应常数 | 0.5 s-1 | [ | |
| 迁移能垒高度 | 3.75×105 J/m3 | [ | |
| 梯度能量系数 | 1×10-10 J/m | [ | |
| 各向异性强度 | 0.1 | [ | |
| 各向异性模数 | 4 | [ | |
| 对称因子 | 0.5 | [ | |
| 环境温度 | 293 K | [ | |
| 电极电导率 | 1×107 S/m | [ | |
| 电解质电导率 | 0.1 S/m | [ | |
| 锂离子在电极中扩散系数 | 1.7×10-15 m2/s | [ | |
| 锂离子在电解质中扩散系数 | 2×10-15 m2/s | [ | |
| 电极杨氏模量 | 7.8 GPa | [ | |
| 电解质杨氏模量 | 1 GPa | [ | |
| 电极泊松比 | 0.42 | [ | |
| 电解质泊松比 | 0.3 -0.866×10-3 | [ | |
| Vagard应变系数 | -0.773×10-3 -0.529×10-3 | [ | |
| 预指数 | 2.582×10-9 m2/s | [ | |
| 固相锂浓度 | 7.64×104 mol/m3 | [ | |
| 标准锂浓度 | 1×103 mol/m3 | [ |
| [1] | YANG L, ZHANG H, XU H T, et al. Interfacial catalysis strategy for high-performance solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(39): 2401829. DOI: 10.1002/aenm. 202401829. |
| [2] | ZHU Y Q, GAO Y J, CUI C H, et al. A strong-surface-polarity separator enables dendrite-free lithium metal anodes via coordinated garnet electrolyte[J]. Chemical Engineering Journal, 2023, 477: 147041. DOI: 10.1016/j.cej.2023.147041. |
| [3] | YI X P, YANG Y, SONG J J, et al. Strategically tailored polyethylene separator parameters enable cost-effective, facile, and scalable development of ultra-stable liquid and all-solid-state lithium batteries[J]. Energy Storage Materials, 2025, 77: 104191. DOI: 10.1016/j.ensm.2025.104191. |
| [4] | CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. DOI: 10.1016/j. jpowsour.2015.09.055. |
| [5] | ZHANG H W, LIU Z, LIANG L Y, et al. Understanding and predicting the lithium dendrite formation in Li-ion batteries: Phase field model[J]. ECS Transactions, 2014, 61(8): 1. DOI: 10.1149/06108.0001ecst. |
| [6] | GAO L T, GUO Z S. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183: 109919. DOI: 10.1016/j.commatsci. 2020. 109919. |
| [7] | ZHAO H Y, LIAO C L, ZHANG C Z, et al. Phase-field modeling of lithium dendrite deposition process: When an internal short circuit occurs[J]. Journal of Energy Storage, 2024, 100: 113779. DOI: 10.1016/j.est.2024.113779. |
| [8] | ZHANG B, ZHAO Y H, CHEN W P, et al. Phase field simulation of dendrite sidebranching during directional solidification of Al-Si alloy[J]. Journal of Crystal Growth, 2019, 522: 183-190. DOI: 10. 1016/j.jcrysgro.2019.06.027. |
| [9] | WANG Z H, JIANG W J, ZHAO Y Z, et al. Chemo-mechanical coupling phase-field modeling of lithium dendrite growth within solid electrolyte[J]. Journal of Solid State Electrochemistry, 2023, 27(1): 245-253. DOI: 10.1007/s10008-022-05316-6. |
| [10] | YANG H D, WANG Z J. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes[J]. Journal of Solid State Electrochemistry, 2023, 27(10): 2607-2618. DOI: 10.1007/s10008-023-05560-4. |
| [11] | FAN R, LIAO W C, FAN S X, et al. Regulating interfacial Li-ion transport via an integrated corrugated 3D skeleton in solid composite electrolyte for all-solid-state lithium metal batteries[J]. Advanced Science, 2022, 9(8): 2104506. DOI: 10.1002/advs. 202104506. |
| [12] | MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921. DOI: 10.1016/j.est. 2019. 100921. |
| [13] | FENG X F, DENG N P, YU W, et al. Review: Application of bionic-structured materials in solid-state electrolytes for high-performance lithium metal batteries[J]. ACS Nano, 2024, 18(24): 15387-15415. DOI: 10.1021/acsnano.4c02547. |
| [14] | 杨皓东. 锂金属本构及固态电解质内锂枝晶生长行为研究[D]. 成都: 西南交通大学, 2023. DOI: 10.27414/d.cnki.gxnju.2023.003132. |
| YANG H D. Constitutive behavior of lithium metal and growth behavior of lithium dendrites in solid electrolyte[D]. Chengdu: Southwest Jiaotong University, 2023. DOI: 10.27414/d.cnki.gxnju. 2023.003132. | |
| [15] | 汪泽华. 固态电解质枝晶生长及其与电解质相互作用的相场法研究[D]. 湘潭: 湘潭大学, 2023. DOI: 10.27426/d.cnki.gxtdu. 2023. 000710. |
| WANG Z H. Phase field method study on dendrite growth and interaction with defects in solid electrolyte[D]. Xiangtan: Xiangtan University, 2023. DOI: 10.27426/d.cnki.gxtdu.2023.000710. | |
| [16] | 翟艳芳, 杨佳悦, 邓齐波, 等. 聚合物基复合固态电解质中锂枝晶生长的相场模拟研究[J]. 固体力学学报, 2024, 45(5): 587-594. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.029. |
| ZHAI Y F, YANG J Y, DENG Q B, et al. Phase-field simulation of lithium dendrite growth in polymer-based composite solid-state electrolytes[J]. Chinese Journal of Solid Mechanics, 2024, 45(5): 587-594. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.029. | |
| [17] | 侯鹏洋, 谢佳苗, 李京阳, 等. 基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟[J]. 物理学报, 2025, 74(7): 9-21. |
| HOU P Y, XIE J M, LI J Y, et al. Phase field simulation study of dendrite growth of solid-state lithium battery based on mechanical-thermal-electrochemical coupling[J]. Acta Physica Sinica, 2025, 74(7): 9-21. | |
| [18] | 耿晓彬. 聚合物固态电解质电池锂枝晶生长相场模拟研究[D]. 武汉: 华中科技大学, 2024. DOI: 10.27157/d.cnki.ghzku.2024.002485. |
| GENG X B. Simulation of phase field of lithium dendrite growth in polymer solid-state electrolyte batteries[D]. Wuhan: Huazhong University of Science and Technology, 2024. DOI: 10.27157/d.cnki.ghzku.2024.002485. | |
| [19] | HOU J Y, SUN W, YUAN Q Y, et al. Multiscale engineered bionic solid-state electrolytes breaking the stiffness-damping trade-off[J]. Angewandte Chemie International Edition, 2025, 64(11): e202421427. DOI: 10.1002/anie.202421427. |
| [20] | ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839. DOI: 10.1039/D0CS00305K. |
| [21] | 黄义雄. 锂金属电池负极枝晶生长特性研究[D]. 大连: 大连理工大学, 2022. DOI: 10.26991/d.cnki.gdllu.2022.000644. |
| HUANG Y X. Study on dendrite growth characteristics of anode of lithium metal battery[D]. Dalian: Dalian University of Technology, 2022. DOI: 10.26991/d.cnki.gdllu.2022.000644. | |
| [22] | 李亚捷, 陈斌, 王依平, 等. 定制电解液或隔膜实现锂离子各向异性输运从而抑制枝晶生长: 相场模拟研究[J]. 物理化学学报, 2024, 40(3): 77-78. |
| LI Y J, CHEN B, WANG Y P, et al. Inhibiting dendrite growth by customizing electrolyte or separator to achieve anisotropic lithium-ion transport: A phase-field study[J]. Acta Physico-Chimica Sinica, 2024, 40(3): 77-78. | |
| [23] | QIAN J, CHEN Q Y, HONG M, et al. Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose[J]. Materials Today, 2022, 54: 18-26. DOI: 10.1016/j.mattod.2022.02.015. |
| [24] | ZHANG W D, SHEN Z Y, LI S Y, et al. Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: Toward practical Li-metal full batteries[J]. Advanced Functional Materials, 2020, 30(39): 2003800. DOI: 10.1002/adfm. 202003800. |
| [1] | Chen LIANG, Pengfei XING, Mengwu WU, Xunpeng QIN. Phase-field simulation study on the growth and dissolution of lithium dendrites during the charging and discharging processes of lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1829-1840. |
| [2] | Gongxun LU, Huadong YUAN, Jianmin LUO, Yao WANG, Yujing LIU, Peng SHI, Shihui ZOU, Guangmin ZHOU, Xinyong TAO, Jianwei NAI. Surface pre-treatment strategies for lithium metal: Advancement and perspective [J]. Energy Storage Science and Technology, 2025, 14(3): 947-964. |
| [3] | Zhuo LI, Xin GUO. Solidification of polymer-based electrolytes for energy-density solid-state batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 212-230. |
| [4] | Feng LI, Xiaobin CHENG, Jinda LUO, Hongbin YAO. Metal chloride solid-state electrolytes and all-solid-state batteries: State-of-the-art developments and perspectives [J]. Energy Storage Science and Technology, 2024, 13(1): 193-211. |
| [5] | Xin SHEN, Rui ZHANG, Chenzi ZHAO, Peng WU, Yutong ZHANG, Jundong ZHANG, Lizhen FAN, Quanbing LIU, Aibing CHEN, Qiang ZHANG. Recent advances in mechano-electrochemistry in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. |
| [6] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
| [7] | Yonggang LOU, Dayong WU, Boran CAI, Weihua LIANG, Luye YANG, Lei HE, Jianhua CAO. Study on preparation and performance of poly(m-phenylene isophthalamide)/solid-state ionic conductor composite membrane [J]. Energy Storage Science and Technology, 2022, 11(10): 3112-3122. |
| [8] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
| [9] | Wenlin YAN, Fan WU, Hong LI, Liquan CHEN. Application of Si-based anodes in sulfide solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 821-835. |
| [10] | FAN Yaping, YAN Liqin, JIAN Dechao, LYU Taolin, YU Meng, WANG Zhenyu, ZHANG Quansheng, XIE Jingying. In situ detection of lithium dendrite in the failure of lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. |
| [11] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
