Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2232-2239.doi: 10.19799/j.cnki.2095-4239.2025.0058
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhangjie XU1,2(), Zhengyue SUN3, Xinyan ZHANG3, Jiliang ZHANG1,2(
), Yingchao YU3, Chuang DONG1
Received:
2025-01-15
Revised:
2025-01-23
Online:
2025-06-28
Published:
2025-06-27
Contact:
Jiliang ZHANG
E-mail:xu1178900808@163.com;15248127383@163.com
CLC Number:
Zhangjie XU, Zhengyue SUN, Xinyan ZHANG, Jiliang ZHANG, Yingchao YU, Chuang DONG. FeOOH coating on FeS as high-performance anode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(6): 2232-2239.
1 | LYU J H, JI J Y, LI C, et al. Analysis of energy carbon emission driving mechanism and decoupling level under "Dual Carbon" goal: Taking the three northeastern provinces as an example[J]. Ecological Economy, 2024, 40(10): 39-46. |
2 | POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499. DOI: 10.1038/35035045. |
3 | 李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. |
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. | |
4 | PAUL A, MAGEE R, WILCZEWSKI W, et al. Application of the multi-species, multi-reaction model to coal-derived graphite for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2024, 171(2): 023501. DOI: 10.1149/1945-7111/ad2061. |
5 | YIN H, TANG J, ZHANG K, et al. Precision pre-lithiated graphite anode for lithium-ion capacitors with exceptional high-temperature cycling stability[J]. Chemistry Letters, 2024, 53(3): upae027. DOI: 10.1093/chemle/upae027. |
6 | VINAYAK A K, WANG X L. A green approach for cohesive recycling and regeneration of electrode active materials from spent lithium-ion batteries[J]. The Canadian Journal of Chemical Engineering, 2024, 102(5): 1852-1862. DOI: 10.1002/cjce.25166. |
7 | ZENG Z Y, ZHANG X W, BUSTILLO K, et al. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy[J]. Nano Letters, 2015, 15(8): 5214-5220. DOI: 10.1021/acs.nanolett.5b02483. |
8 | XIONG F Y, CAI Z Y, QU L B, et al. Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: A stable anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 12625-12630. DOI: 10.1021/acsami.5b02978. |
9 | MUELLER F, BRESSER D, CHAKRAVADHANULA V S K, et al. Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries[J]. Journal of Power Sources, 2015, 299: 398-402. DOI: 10.1016/j.jpowsour.2015.08.018. |
10 | SON S B, YERSAK T A, PIPER D M, et al. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte[J]. Advanced Energy Materials, 2014, 4(3): 1300961. DOI: 10.1002/aenm.201300961. |
11 | GUO S P, LI J C, MA Z, et al. A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries[J]. Journal of Materials Science, 2017, 52(4): 2345-2355. DOI: 10.1007/s10853-016-0527-y. |
12 | HOU B H, WANG Y Y, GUO J Z, et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries[J]. Nanoscale, 2018, 10(19): 9218-9225. DOI: 10.1039/C7NR09674G. |
13 | WANG Q, ZHANG W, GUO C, et al. In-situ construction of 3D interconnected FeS@Fe3C@Graphitic carbon networks for high-performance sodium-ion batteries[J]. Advanced Functional Materials, 2017, 27(41): DOI: 10.1002/adfm.201703390. |
14 | LI Q D, WEI Q L, ZUO W B, et al. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries[J]. Chemical Science, 2017, 8(1): 160-164. DOI: 10.1039/C6SC02716D. |
15 | HU Z, ZHU Z Q, CHENG F Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries[J]. Energy & Environmental Science, 2015, 8(4): 1309-1316. DOI: 10.1039/C4EE03759F. |
16 | FANG X, GE M Y, RONG J P, et al. Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life[J]. Journal of Materials Chemistry A, 2013, 1(12): 4083-4088. DOI: 10.1039/C3TA01534C. |
17 | WANG X F, XIANG Q Y, LIU B, et al. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries[J]. Scientific Reports, 2013, 3: 2007. DOI: 10.1038/srep02007. |
18 | FEI L, LIN Q L, YUAN B, et al. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 5330-5335. DOI: 10.1021/am401239f. |
19 | WEI X, LI W H, SHI J N, et al. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27804-27809. DOI: 10.1021/acsami.5b09062. |
20 | ZHOU F, ZHAO X M, YUAN C G, et al. Hydrothermal synthesis of ultrafine β-FeOOH nanorods as cathode materials for lithium ion batteries[J]. Chemistry Letters, 2006, 35(12): 1410-1411. DOI: 10.1246/cl.2006.1410. |
21 | 苏永进, 耿茂宁, 韩东梅. 锂离子电池用聚多巴胺衍生碳包覆硅纳米颗粒复合材料的制备与性能[J]. 电镀与涂饰, 2023, 42(21): 47-53. DOI: 10.19289/j.1004-227x.2023.21.008. |
SU Y J, GENG M N, HAN D M. Preparation and properties of polydopamine-derived carbon-coated silicon nanoparticle composites for lithiumion batteries[J]. Electroplating & Finishing, 2023, 42(21): 47-53. DOI: 10.19289/j.1004-227x.2023.21.008. | |
22 | XU X J, LIU Z B, JI S M, et al. Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries[J]. Chemical Engineering Journal, 2019, 359: 765-774. DOI: 10.1016/j.cej.2018.11.191. |
23 | MALLICK P. Influence of different materials on the microstructure and optical band gap of α-Fe2O3 nanoparticles[J]. Materials Science-Poland, 2014, 32(2): 193-197. DOI: 10.2478/s13536-013-0171-z. |
24 | CAO Z J, SONG H H, CAO B, et al. Sheet-on-sheet chrysanthemum-like C/FeS microspheres synthesized by one-step solvothermal method for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2017, 364: 208-214. DOI: 10.1016/j.jpowsour.2017.08.018. |
25 | CHEN K, LI O L. N-doped ZnSe/CoSe2@RGO core-shell heterostructure nanocomposites with activated electrons for efficient ORR activity[J]. Materials Letters, 2022, 320: 132398. DOI: 10.1016/j.matlet.2022.132398. |
26 | AMAMA P B, ZEMLYANOV D, SUNDARAKANNAN B, et al. XPS and Raman characterization of single-walled carbon nanotubes grown from pretreated Fe2O3 nanoparticles[J]. Journal of Physics D: Applied Physics, 2008, 41(16): 165306. DOI: 10.1088/0022-3727/41/16/165306. |
27 | QIAN X F, WU Y W, KAN M, et al. FeOOH quantum dots coupled g-C3N4 for visible light driving photo-Fenton degradation of organic pollutants[J]. Applied Catalysis B: Environmental, 2018, 237: 513-520. DOI: 10.1016/j.apcatb.2018.05.074. |
28 | DU H F, GU S, LIU R W, et al. Highly active and inexpensive iron phosphide nanorods electrocatalyst towards hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14272-14278. DOI: 10.1016/j.ijhydene.2015.02.099. |
29 | XIA X F, LEI W, HAO Q L, et al. One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)x (M=FeO, Ni, Co) nanoparticles[J]. Electrochimica Acta, 2013, 113: 117-126. DOI: 10.1016/j.electacta. 2013.09.072. |
30 | HE X, ZHANG X D, YIN S, et al. Interface engineering of space-confined Fe3O4/FeS heterostructures: Synergistic effect and ultrastable Li storage[J]. Industrial & Engineering Chemistry Research, 2023, 62(21): 8312-8326. DOI: 10.1021/acs.iecr. 3c00559. |
31 | CHEN L J, SONG K M, SHI J, et al. PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance[J]. Science China Materials, 2021, 64(1): 105-114. DOI: 10.1007/s40843-020-1389-x. |
[1] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[2] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747. |
[3] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[4] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of 100 selected recent papers on lithium batteries (December 1, 2024 to January 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(3): 1310-1330. |
[5] | Junfeng HAO, Guanjun CEN, Ronghan QIAO, Jing ZHU, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2024 to Nov. 30, 2024) [J]. Energy Storage Science and Technology, 2025, 14(1): 388-405. |
[6] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024 [J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244. |
[7] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[8] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[9] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[10] | Junfeng HAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. A review of 100 selected recent studies on lithium batteries (April 1, 2024—May 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(7): 2361-2376. |
[11] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[12] | Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416. |
[13] | Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. |
[14] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[15] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2024 to Sep. 30, 2024) [J]. Energy Storage Science and Technology, 2024, 13(11): 4207-4225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||