Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3319-3329.doi: 10.19799/j.cnki.2095-4239.2025.0172
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chengchen LI1(), Qinghua YU1(
), Huitao DAI2, Na JIA3, Lin WANG3, Binbo SUN1
Received:
2025-02-25
Revised:
2025-03-28
Online:
2025-09-28
Published:
2025-09-05
Contact:
Qinghua YU
E-mail:333913@whut.edu.cn;qhyu@whut.edu.cn
CLC Number:
Chengchen LI, Qinghua YU, Huitao DAI, Na JIA, Lin WANG, Binbo SUN. Numerical study on charging/discharging characteristics of a closed thermochemical reactor based on SrBr2·6H2O[J]. Energy Storage Science and Technology, 2025, 14(9): 3319-3329.
Table 2
Physical parameters involved in the governing equations[15-17]"
参数 | 物理意义 | 数值 |
---|---|---|
Af | 指前因子 | 16300 1/s |
Ea | 反应活化能 | 55000 J/mol |
R | 理想气体常数 | 8.314 J/(mol·K) |
ΔH | 反应焓 | 67400 J/mol |
ΔS | 反应熵 | 175 J/(mol·K) |
ε | 孔隙率 | 0.75 |
dp | 颗粒直径 | 0.001 m |
χ | 化学反应计量数 | 5 |
cp,hyd | SrBr2·6H2O比热容 | 967 J/(kg·K) |
cp,deh | SrBr2·H2O比热容 | 456 J/(kg·K) |
λhyd | SrBr2·6H2O热导率 | 0.71 W/(m·K) |
λdeh | SrBr2·H2O热导率 | 0.56 W/(m·K) |
ρhyd | SrBr2·6H2O密度 | 2386 kg/m3 |
ρdeh | SrBr2·H2O密度 | 3911 kg/m3 |
Mhyd | SrBr2·6H2O摩尔质量 | 0.35549 kg/mol |
Mdeh | SrBr2·H2O摩尔质量 | 0.26544 kg/mol |
Mv | H2O摩尔质量 | 0.01802 kg/mol |
pref | 参考压力 | 101325 Pa |
pc/e | 冷凝/蒸发压力 | 2340 Pa |
Tin,ch | 储能过程HTF温度 | 353.15 K |
Tin,dis | 放能过程HTF温度 | 293.15 K |
T0,ch | 储能过程初始温度 | 326.66 K |
T0,dis | 放能过程初始温度 | 293.15 K |
uin | HTF流速 | 0.01 m/s |
[1] | WEI X X, SHI X L, LI Y P, et al. Analysis of the European energy crisis and its implications for the development of strategic energy storage in China[J]. Journal of Energy Storage, 2024, 82: 110522. DOI: 10.1016/j.est.2024.110522. |
[2] | DING Z X, WU W. Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer[J]. Applied Energy, 2022, 324: 119748. DOI: 10.1016/j.apenergy.2022.119748. |
[3] | LUO X Y, LI W, WANG Q W, et al. Numerical investigation of a thermal energy storage system based on the serpentine tube reactor[J]. Journal of Energy Storage, 2022, 56: 106071. DOI: 10.1016/j.est.2022.106071. |
[4] | N'TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on long-term sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2385-2396. DOI: 10. 1016/j.rser.2009.05.008. |
[5] | 马鸿坤, 纪明希, 丁玉龙. 中低温吸附式热化学储热研究现状与进展[J]. 储能科学与技术, 2024, 13(12): 4436-4451. DOI: 10.19799/j.cnki.2095-4239.2024.0909. |
MA H K, JI M X, DING Y L. Current status and advances in the low-to-medium temperature sorption-based thermochemical heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4436-4451. DOI: 10.19799/j.cnki.2095-4239.2024.0909. | |
[6] | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. DOI: 10.1016/j.apenergy.2017.04.080. |
[7] | MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction[J]. Solar Energy, 2008, 82(7): 623-636. DOI: 10.1016/j.solener.2008.01.002. |
[8] | 丁波. 基于SrBr2-蛭石复合材料的长期热化学蓄热性能研究[D]. 北京: 华北电力大学, 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000894. |
[9] | AIT OUSALEH H, SAID S, ZAKI A, et al. Silica gel/inorganic salts composites for thermochemical heat storage: Improvement of energy storage density and assessment of cycling stability[J]. Materials Today: Proceedings, 2020, 30: 937-941. DOI: 10.1016/j.matpr.2020.04.354. |
[10] | CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240. DOI: 10.1016/j.enconman. 2018.04.031. |
[11] | KANT K, PITCHUMANI R. Analysis of a novel constructal fin tree embedded thermochemical energy storage for buildings applications[J]. Energy Conversion and Management, 2022, 258: 115542. DOI: 10.1016/j.enconman.2022.115542. |
[12] | ZHANG Y, LIU D Y, MA J L, et al. Improvement of heat transfer and reaction performance of a K2CO3 fixed-bed energy storage reactor using topology optimization[J]. Journal of Energy Storage, 2025, 111: 115443. DOI: 10.1016/j.est.2025.115443. |
[13] | HUMBERT G, DING Y L, SCIACOVELLI A. Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures[J]. Applied Energy, 2022, 311: 118633. DOI: 10.1016/j.apenergy.2022.118633. |
[14] | LUO X Y, LI W, ZHANG L J, et al. Effects evaluation of Fin layouts and configurations on discharging performance of double-pipe thermochemical energy storage reactor[J]. Energy, 2023, 282: 128821. DOI: 10.1016/j.energy.2023.128821. |
[15] | LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843. DOI: 10.1016/j.enconman.2019.111843. |
[16] | RUI J J, LUO Y M, WANG M Q, et al. Design and performance evaluation of an innovative salt hydrates-based reactor for thermochemical energy storage[J]. Journal of Energy Storage, 2022, 55: 105799. DOI: 10.1016/j.est.2022.105799. |
[17] | HAO C S, FENG G S, MA C J, et al. Performance analysis of a novel multi-module columnar packed bed reactor with salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2024, 86: 111170. DOI: 10.1016/j.est.2024.111170. |
[18] | 芮金金. 新型水合盐热化学储热反应器数值模拟研究[D]. 长沙: 湖南大学, 2022. DOI: 10.27135/d.cnki.ghudu.2022.002603. |
[19] | WANG M Y, CHEN L, HE P, et al. Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors[J]. Energy, 2019, 181: 417-428. DOI: 10.1016/j.energy.2019.05.184. |
[1] | Ying LI, Shuli LIU, Yuliang ZOU, Yihan WANG, Tingsen CHEN, Yongliang SHEN. Sensitivity analysis of thermal performance parameters of zeolite-filled thermochemical reactor during energy release [J]. Energy Storage Science and Technology, 2025, 14(9): 3330-3339. |
[2] | Xiankui WEN, Bowen LI, Zhengjun SHI, Huayang YE, Lingrong PANG, Xiaoyin ZHANG. Analysis of electromagnetic and thermal characteristics of magnetic bearings in flywheel energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(8): 2932-2941. |
[3] | Jintao WU, Yongjun ZHOU, Xu YANG, Chenxin DENG, Yiming HAN. Numerical simulation of the fire suppression effect of fine water mist on electric vehicles [J]. Energy Storage Science and Technology, 2025, 14(5): 2098-2105. |
[4] | Bin YANG, Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG, Daliang QIAO, Yang SUN, Youping LI. Numerical analysis of fin optimization for a shell-and-tube phase change energy storage heat exchanger [J]. Energy Storage Science and Technology, 2025, 14(4): 1394-1412. |
[5] | Yakun LIU, Siyuan SHEN, Wenyan LEI, Jiaxin GAO, Denghui JIN, Yujun LI, Donghuang LUO, Wei HAO, Zheng LIANG. Temperature rise response of cylindrical lithium-ion cells to surge current [J]. Energy Storage Science and Technology, 2025, 14(4): 1574-1584. |
[6] | Yuelin CHEN, Hongzhong MA, Muyu ZHU, Wenjing XUAN, Sihan WANG. Research on the liquid cooling technology of a lithium iron phosphate battery pack under a peak load regulation in a power grid [J]. Energy Storage Science and Technology, 2024, 13(8): 2704-2712. |
[7] | Feng XIAO, Fulai CHENG, Xuemei LUO, Guangping ZHANG, Bin ZHANG. Study on the tensile properties of PET-Cu composite current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1755-1766. |
[8] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[9] | Wei XIAO, Xiaowen WU, Jingling SUN, Wei CHEN. Numerical calculation of temperature field of energy storage battery module and optimization design of heat dissipation system [J]. Energy Storage Science and Technology, 2024, 13(4): 1159-1166. |
[10] | Ludi ZHANG, Guobing ZHOU. Simulated optimization of eccentricity and fin structure of a horizontal double-tube latent heat storage unit [J]. Energy Storage Science and Technology, 2024, 13(3): 1019-1029. |
[11] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[12] | Jinya ZHANG, Wenbo ZHOU, Ziyiyi CHENG. Performance comparison of metal foam and fin phase-change energy storage system based on LBM [J]. Energy Storage Science and Technology, 2024, 13(2): 598-607. |
[13] | Yibin LUO, Wenchao DUAN, Jinghao YAN, Jie LI, Xiaoqin SUN, Shuguang LIAO. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit [J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. |
[14] | Feng LI, Yuanwei LU, Yanquan WANG, Yancheng MA, Yuting WU. Effect of airfoil structure on flow and heat transfer characteristics of printed circuit heat exchanger [J]. Energy Storage Science and Technology, 2024, 13(2): 416-424. |
[15] | Sha CHEN, Yuehao CHEN, Xiaoqin SUN, Shuguang LIAO. Preparation and properties of nano-carbon-based composite paraffin phase-change materials [J]. Energy Storage Science and Technology, 2024, 13(12): 4349-4356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||