Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1995-2009.doi: 10.19799/j.cnki.2095-4239.2024.0101
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2024-02-01
Revised:
2024-03-01
Online:
2024-06-28
Published:
2024-06-26
Contact:
Baoquan LIU
E-mail:liubq@sust.edu.cn
CLC Number:
Baoquan LIU, Xiaoyu CAO. Accurate typical gas detection of lithium battery in early thermal runaway period[J]. Energy Storage Science and Technology, 2024, 13(6): 1995-2009.
Table 1
Error and average precision improvement of 8 experimental data groups"
电池 种类 | 荷电 状态 | 注入气体 浓度 | 加算法前 误差最大值 | 加算法前 误差最小值 | 加算法后 误差最大值 | 加算法后 误差最小值 | 提升精度 平均值 |
---|---|---|---|---|---|---|---|
LFP | 100% SOC | 100 mL/m3 H2 30 mL/m3 CO | 120 | 25 | 29 | 5 | 5.37% |
46 | 13 | 37 | 4 | 2.7% | |||
150 mL/m3 H2 45 mL/m3 CO | 162 | 31 | 46 | 9 | 9.46% | ||
52 | 18 | 27 | 10 | 4.38% | |||
50% SOC | 120 mL/m3 H2 20 mL/m3 CO | 156 | 17 | 34 | 4 | 8.4% | |
58 | 23 | 42 | 14 | 6.56% | |||
180 mL/m3 H2 30 mL/m3 CO | 145 | 44 | 29 | 8 | 8.92% | ||
41 | 8 | 23 | 1 | 6.75% | |||
NMC | 100% SOC | 40 mL/m3 H2 70 mL/m3 CO | 127 | 25 | 46 | 5 | 10.04% |
84 | 11 | 37 | 3 | 2.62% | |||
80 mL/m3 H2 140 mL/m3 CO | 112 | 35 | 45 | 15 | 9.36% | ||
87 | 31 | 42 | 15 | 3.46% | |||
50% SOC | 50 mL/m3 H2 100 mL/m3 CO | 106 | 15 | 41 | 5 | 9% | |
104 | 19 | 42 | 8 | 3.4% | |||
75 mL/m3 H2 150 mL/m3 CO | 115 | 30 | 48 | 10 | 9.8% | ||
91 | 16 | 39 | 9 | 3.17% |
Appendix
Table 1 Cross interference data of CO electrochemical sensor (Model: ME2-CO-ϕ14×5)"
气体种类 | 气体浓度 | 传感器信号 | 交叉干扰系数 |
---|---|---|---|
硫化氢 | 100 mL/m3 | 0 mL/m3 | 0% |
乙烯 | 100 mL/m3 | 80 mL/m3 | 80% |
一氧化氮 | 35 mL/m3 | 6 mL/m3 | 17.14% |
二氧化氮 | 5 mL/m3 | 0 mL/m3 | 0% |
乙醇 | 100 mL/m3 | 0 mL/m3 | 0% |
氯气 | 10 mL/m3 | 1 mL/m3 | 10% |
二氧化硫 | 20 mL/m3 | 0.6 mL/m3 | 3% |
氢气 | 500 mL/m3 | 43 mL/m3 | 8.6% |
氨气 | 50 mL/m3 | 1 mL/m3 | 2% |
一氯甲烷 | 5 mL/m3 | 0 mL/m3 | 0% |
环氧乙烷 | 10 mL/m3 | 0 mL/m3 | 0% |
苯 | 100 mL/m3 | 1.5 mL/m3 | 1.5% |
丙酮 | 100 mL/m3 | 3.5 mL/m3 | 3.5% |
甲醇 | 200 mL/m3 | 0 mL/m3 | 0% |
1 | 陈银, 肖如, 崔怡琳, 等. 储能电站锂离子电池火灾早期预警与抑制技术研究综述[J]. 电气工程学报, 2022, 17(4): 72-87. |
CHEN Y, XIAO R, CUI Y L, et al. Research review on early warning and suppression technology of lithium-ion battery fire in energy storage power station[J]. Journal of Electrical Engineering, 2022, 17(4): 72-87. | |
2 | 劳力. 高比能锂离子动力电池系统充电策略及热失控安全研究[D]. 合肥: 中国科学技术大学, 2020. |
LAO L. Study on charging strategy and thermal runaway safety of high specific energy lithium ion power battery system[D]. Hefei: University of Science and Technology of China, 2020. | |
3 | 马敬轩, 宋宇航, 石爽, 等. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. |
MA J X, SONG Y H, SHI S, et al. Early warning of the thermal runaway of liquid-cooled LiFePO4 battery module based on the sudden change of air-pressure signal detection[J]. Energy Storage Science and Technology, 2023, 12(7): 2246-2255. | |
4 | HE D R, SUN J L, LI Y, et al. Thermal runaway warning based on safety management system of lithium iron phosphate battery for energy storage[C]// 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). IEEE, 2020: 577-582. |
5 | 谭则杰, 周晓燕, 徐振恒, 等. 锂离子电池热失控监测与预警的气敏技术研究进展[J]. 储能科学与技术, 2023, 12(11): 3456-3470. |
TAN Z J, ZHOU X Y, XU Z H, et al. Research progress of gas-sensing technologies for the monitoring and early warning of thermal runaway in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3456-3470. | |
6 | 董明, 刘王泽宇, 李晓枫, 等. 基于电化学阻抗谱的锂电池过充电阻抗特性与检测方法研究[J]. 中国电机工程学报, 2024, 44(9): 3388-3399. |
DONG M, LIU W Z Y, LI X F, et al. Study on overcharge impedance characteristics and detection methods of lithium batteries based on electrochemical impedance spectroscop[J]. Proceedings of the CSEE, 2024, 44(9): 3388-3399. | |
7 | 靳欣, 张建茹, 王其钰, 等. 混合固液锂离子电池的热失控行为研究[J]. 储能科学与技术, 2024, 13(1): 48-56. |
JIN X, ZHANG J R, WANG Q Y, et al. Study on thermal runaway of hybrid solid-liquid batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. | |
8 | 于天剑, 冯恩来, 伍珣. 基于数据驱动的动车组镍镉电池记忆效应消除策略研究[J/OL]. 铁道科学与工程学报: 1-14[2023-10-11]. https://doi.org/10.19713/j.cnki.43-1423/u.T20231236. |
YU T J, FENG E L, WU X. Research on data-driven strategies for eliminating the memory effect of nickel cadmium batteries in high-speed trains[J/OL]. Journal of Railway Science and Engineering: 1-14[2023-10-11]. https://doi.org/10.19713/j.cnki.43-1423/u.T20231236. | |
9 | SONG Y H, LYU N W, SHI S, et al. Safety warning for lithium-ion batteries by module-space air-pressure variation under thermal runaway conditions[J]. Journal of Energy Storage, 2022, 2022(56): 105911. |
10 | 李奎杰, 楼平, 管敏渊, 等. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912. |
LI K J, LOU P, GUAN M Y, et al. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway[J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. | |
11 | 徐成善, 鲁博瑞, 张梦启, 等. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
XU C S, LU B R, ZHANG M Q, et al. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin[J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. | |
12 | 张斌, 吴楠, 赵希强, 等. 基于红外热成像技术的动力电池组热失控监测系统[J]. 电池工业, 2019, 23(4): 171-175, 185. |
ZHANG B, WU N, ZHAO X Q, et al. Thermal out-of-control monitoring system for power batteries based on infrared thermal imaging technology[J]. Chinese Battery Industry, 2019, 23(4): 171-175, 185. | |
13 | 苏同伦. 基于声信号的锂电池储能舱安全预警及故障定位方法研究[D]. 郑州: 郑州大学, 2021. |
SU T L. Research on safety warning and fault location of lithium battery energy storage cabin based on acoustic signal[D]. Zhengzhou: Zhengzhou University, 2021. | |
14 | FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222. |
15 | YUAN Q F, ZHAO F G, WANG W D, et al. Overcharge failure investigation of lithium-ion batteries[J]. Electrochimica Acta, 2015, 178: 682-688. |
16 | 朱艳丽, 徐艺博, 王聪杰, 等. 不同荷电状态磷酸铁锂电池热失控温度与产气特性分析[J]. 安全与环境学报, 2024, 24(1): 143-151. |
ZHU Y L, XU Y B, WANG C J, et al. Analysis of thermal runaway temperature and gas production characteristics of lithium iron phosphate batteries with different states of charge[J]. Journal of Safety and Environment, 2024, 24(1): 143-151. | |
17 | WANG L, MA Y, GAO Y, et al. Study of gas evolution behavior of lithium-ion battery via in situ FT-IR spectroscopy[J]. Journal of Electroanalytical Chemistry, 2023, 16(7): 109-112. |
18 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 8(4): 1714-1729. |
19 | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. |
20 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Early detection for Li-ion batteries thermal runaway based on gas sensing[J]. ECS Transactions, 2019, 89(1): 85-97. |
21 | 吴静云, 郭鹏宇, 张淼, 等. 基于气体检测的锂电池热失控预警研究进展[J]. 消防科学与技术, 2022, 41(2): 161-164. |
WU J Y, GUO P Y, ZHANG M, et al. Research progress on the warning of the thermal runaway of lithium-ion battery based on the gas detection[J]. Fire Science and Technology, 2022, 41(2): 161-164. | |
22 | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. |
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. | |
23 | 孙宇峰, 黄行九, 刘伟, 等. 电化学CO气体传感器及其敏感特性[J]. 传感器技术, 2004, 23(7): 14-17. |
SUN Y F, HUANG X J, LIU W, et al. CO electrochemical gas sensor and it's sensitive character[J]. Journal of Transducer Technology, 2004, 23(7): 14-17. | |
24 | 陆熊. 基于电化学传感器的气体检测仪的设计[D]. 上海: 上海交通大学, 2015. |
LU X. Design of A gas detection system based on electrochemical sensors[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
25 | 刘辰旸. 用于呼气检测的光激发半导体气体传感器[D]. 大连: 大连理工大学, 2022. |
LIU C Y. UV-activated semiconductor gas sensor for exhaled breath detection[D]. Dalian: Dalian University of Technology, 2022. | |
26 | 曹利峰, 贾博文, 蔡宏忱, 等. 一种电化学传感器交叉干扰的补偿方法与实践[J]. 中国环保产业, 2021(7): 64-72. |
CAO L F, JIA B W, CAI H C, et al. Compensation method and practice for cross interference of electrochemical gas sensors[J]. China Environmental Protection Industry, 2021(7): 64-72. | |
27 | 蒋学悟, 刘海韬, 魏海明. 电化学气体传感器测量干扰排除的探讨[C]//中国土木工程学会城市燃气分会应用专业委员会2010年年会论文集. 中国土木工程学会, 2010: 182-185. |
28 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
29 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. |
30 | 赵春朋. 受限空间三元锂离子电池热失控燃爆危险性研究[D]. 合肥: 中国科学技术大学, 2021. |
ZHAO C P. Study on the risk of thermal runaway explosion of ternary lithium ion battery in confined space[D]. Hefei: University of Science and Technology of China, 2021. | |
31 | 秦鹏. 磷酸铁锂电池热失控产热产气规律及火焰主控机制研究[D]. 合肥: 中国科学技术大学, 2022. |
QIN P. The investigation on the heat-gas regularity and flame controlling mechanism of lithium iron phosphate battery thermal runaway[D]. Hefei: University of Science and Technology of China, 2022. |
[1] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[2] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[3] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
[4] | Wenqiang FAN, Zinan SHI, Daiming YANG, Huishi LIANG, Ye CHEN. Experimental study on the suppression effect of different coolants on battery thermal runaway [J]. Energy Storage Science and Technology, 2025, 14(4): 1554-1563. |
[5] | Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. |
[6] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[7] | Pengjie ZHU, Wei LI, Chu ZHANG, Hao SONG, Beibei LI, Xiumei LIU, Lili LIU. Study on early warning system for thermal runaway of lithium batteries in energy storage cabinets due to smoke and gas diffusion [J]. Energy Storage Science and Technology, 2025, 14(2): 624-635. |
[8] | Jinhao YE, Junhui HOU, Zhengguo ZHANG, Ziye LING, Xiaoming FANG, Silin HUANG, Zhiwen XIAO. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell [J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. |
[9] | Huaiyu HUANG, Silin HUANG, Rongchao ZHAO, Zhiwen XIAO, Junhui HOU, Liwei YAN. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. |
[10] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[11] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[12] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
[13] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[14] | Yong CAO, Dapeng YANG, Qing ZHU, Kunfeng LIANG, Xun ZHOU, Yanqin CHANG. Thermal runaway of large capacity lithium-iron phosphate battery pack [J]. Energy Storage Science and Technology, 2024, 13(7): 2462-2469. |
[15] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||