Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3705-3714.doi: 10.19799/j.cnki.2095-4239.2025.0223
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhuoyan YI(
), Pengfei PANG, Yicong HUANG, Mingjie LIAO, Honghua LIANG, Guisheng ZHU(
), Yunyun ZHAO, Huarui XU
Received:2025-03-06
Revised:2025-04-13
Online:2025-10-28
Published:2025-10-20
Contact:
Guisheng ZHU
E-mail:3297395320@qq.com;zgs9539@163.com
CLC Number:
Zhuoyan YI, Pengfei PANG, Yicong HUANG, Mingjie LIAO, Honghua LIANG, Guisheng ZHU, Yunyun ZHAO, Huarui XU. Enhancing the electrochemical stability and ion transport performance of UV-Cured quasi-solid-state electrolytes via Al2O3 doping[J]. Energy Storage Science and Technology, 2025, 14(10): 3705-3714.
Fig. 2
(a) Photograph of OICSE-Al2O3-1; (b) Macroscopic SEM image of OICSE-Al2O3-0; (c) Macroscopic SEM image of OICSE-Al2O3-1; (d) Microscopic EDS mapping of OICSE-Al2O3-1; (e) Microscopic SEM image of OICSE-Al2O3-0; (f) Microscopic SEM image of OICSE-Al2O3-1; (g) High-magnification SEM image of OICSE-Al2O3-1"
Fig. 5
(a) Impedance spectra of OICSE-Al2O3-X at room temperature; (b) Lithium-ion transference number of OICSE-Al2O3-1 at room temperature; (c) LSV curves of OICSE-Al2O3-X; (d) Rate performance of Li||OICSE-Al2O3-0||LiFePO4 and Li||OICSE-Al2O3-1||LiFePO4 at 25 ℃; (e) Specific capacity-voltage curves of Li||OICSE-Al2O3-1||LiFePO4 at different rates at 25 ℃; (f) Ionic conductivity of OICSE-Al2O3-1 at different temperatures"
| [1] | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. DOI: 10. 1126/sciadv.aas9820. |
| [2] | WU M H, HAN S H, LIU S M, et al. Fire-safe polymer electrolyte strategies for lithium batteries[J]. Energy Storage Materials, 2024, 66: 103174. DOI: 10.1016/j.ensm.2024.103174. |
| [3] | ZHANG W Q, NIE J H, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419. DOI: 10.1016/j.nanoen.2018.01.028. |
| [4] | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. DOI: 10.1038/natrevmats.2016.103. |
| [5] | CHEN Q W, OUYANG C, LIANG Y T, et al. Composite polymer electrolyte with vertically aligned garnet scaffolds for quasi solid-state lithium batteries[J]. Energy Storage Materials, 2024, 69: 103418. DOI: 10.1016/j.ensm.2024.103418. |
| [6] | JIN Y M, ZONG X, ZHANG X B, et al. Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 49: 433-444. DOI: 10.1016/j.ensm. 2022.04.035. |
| [7] | JIAO K J, LIU S J, MA Y Y, et al. Long-term cycling quasi-solid-state lithium batteries enabled by 3D nanofibrous TiO2- x@Li anodes and in situ polymerized gel-electrolytes[J]. Chemical Engineering Journal, 2023, 464: 142627. DOI: 10.1016/j.cej. 2023.142627. |
| [8] | ZHANG X Y, CHENG S C, FU C K, et al. Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Nano-Micro Letters, 2024, 17(1): 2. DOI: 10.1007/s40820-024-01498-y. |
| [9] | VU T T, CHEON H J, SHIN S Y, et al. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects[J]. Energy Storage Materials, 2023, 61: 102876. DOI: 10.1016/j.ensm.2023.102876. |
| [10] | LIU X Y, LI X R, LI H X, et al. Recent progress of hybrid solid-state electrolytes for lithium batteries[J]. Chemistry-A European Journal, 2018, 24(69): 18293-18306. DOI: 10.1002/chem.2018 03616. |
| [11] | CHEN L, ZHU F, MA D J, et al. Enhanced 3D framework composite solid electrolyte with alumina-modified Li1.4Al0.4Ti1.6(PO4)3 for solid-state lithium battery[J]. Ionics, 2024, 30(4): 2019-2028. DOI: 10.1007/s11581-024-05421-8. |
| [12] | GUO H L, SUN H, JIANG Z L, et al. A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery[J]. Journal of Materials Science, 2019, 54(6): 4874-4883. DOI: 10.1007/s10853-018-03188-8. |
| [13] | MCOWEN D W, XU S M, GONG Y H, et al. 3D-printing electrolytes for solid-state batteries[J]. Advanced Materials, 2018, 30(18): 1707132. DOI: 10.1002/adma.201707132. |
| [14] | TANG K H, BAI Q S, XU P W, et al. A thiol branched 3D network quasi solid-state polymer electrolyte reinforced by covalent organic frameworks for lithium metal batteries[J]. Small Methods, 2024, 8(12): 2301810. DOI: 10.1002/smtd.202301810. |
| [15] | BAE M, AHN S, YOU S, et al. Expanded illite filler in UV-curable polymer electrolytes for all-solid-state Li-ion batteries[J]. Coatings, 2024, 14(9): 1158. DOI: 10.3390/coatings14091158. |
| [16] | ZHU T J, HAO X Q, CAO Y A, et al. Ultraviolet-cured heat-resistant and stretchable gel polymer electrolytes for flexible and safe semi-solid lithium-ion batteries[J]. Journal of Power Sources, 2024, 613: 234944. DOI: 10.1016/j.jpowsour.2024.234944. |
| [17] | WANG E L, LU Z Y, LIU C F, et al. UV curved PESF-LLZTO composite solid electrolyte to in situ construct ultrastable interface for all solid-state lithium battery[J]. Journal of the Electrochemical Society, 2024, 171(4): 040544. DOI: 10.1149/1945-7111/ad3eb8. |
| [18] | CHEN Z X, ZHANG Y Q, ZHU B S, et al. Construction of high-performance solid-state electrolytes for lithium metal batteries by UV-curing technology[J]. Polymer Testing, 2024, 132: 108386. DOI: 10.1016/j.polymertesting.2024.108386. |
| [19] | FAN H Y, YANG C H, WANG X D, et al. UV-curable PVDF-HFP-based gel electrolytes with semi-interpenetrating polymer network for dendrite-free lithium metal batteries[J]. Journal of Electroanalytical Chemistry, 2020, 871: 114308. DOI: 10.1016/j.jelechem.2020.114308. |
| [20] | JIN L, AHMED F, RYU T, et al. Highly conductive and flexible gel polymer electrolyte with bis(fluorosulfonyl)imide lithium salt via UV curing for Li-ion batteries[J]. Membranes, 2019, 9(11): 139. DOI: 10.3390/membranes9110139. |
| [21] | LU Y, HE K W, ZHANG S J, et al. UV-curable-based plastic crystal polymer electrolyte for high-performance all-solid-state Li-ion batteries[J]. Ionics, 2019, 25(4): 1607-1615. DOI: 10.1007/s11581-018-2788-8. |
| [22] | MASHEKOVA A, BALTASH Y, YEGAMKULOV M, et al. Polycationic doping of the LATP ceramic electrolyte for Li-ion batteries[J]. RSC Advances, 2022, 12(46): 29595-29601. DOI: 10.1039/D2RA05782D. |
| [23] | WANG S J, LV Q, JING Y T, et al. In situ polymerization design of a quasi-solid electrolyte enhanced by NMP additive for lithium metal batteries[J]. Energy Storage Materials, 2024, 69: 103390. DOI: 10.1016/j.ensm.2024.103390. |
| [24] | CAI B R, CAO J H, LIANG W H, et al. Ultraviolet-cured Al2O3-polyethylene terephthalate/polyvinylidene fluoride composite separator with asymmetric design and its performance in lithium batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 5293-5303. DOI: 10.1021/acsaem.1c00804. |
| [25] | JI Y, ZHANG Y H, SHI F N, et al. UV-derived double crosslinked PEO-based solid polymer electrolyte for room temperature[J]. Journal of Colloid and Interface Science, 2023, 629: 492-500. DOI: 10.1016/j.jcis.2022.09.089. |
| [26] | WU X, JIE X H, LIANG X H, et al. Ultraviolet-thermal coupling cross-linked fabricate polymer/ceramic composite solid electrolyte for room temperature quasi solid state lithium ion batteries[J]. Journal of Energy Storage, 2024, 77: 109644. DOI: 10.1016/j.est. 2023.109644. |
| [27] | LI J Q, LIU C J, HE M Y, et al. Improved the electrochemical performance between ZnO@Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and lithium metal electrode for all-solid-state lithium-ion batteries[J]. Electrochimica Acta, 2023, 439: 141549. DOI: 10.1016/j.electacta.2022.141549. |
| [28] | ZHOU P, ZHANG X K, XIANG Y, et al. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries[J]. Nano Research, 2023, 16(6): 8055-8071. DOI: 10. 1007/s12274-022-4833-1. |
| [1] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
| [2] | Honghui LIU, Donghui LI, Qifeng QIAN, Lingchao XIAO, Lei XIONG, Zhongguo CHEN. Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 3110-3121. |
| [3] | Chen LIANG, Pengfei XING, Mengwu WU, Xunpeng QIN. Phase-field simulation study on the growth and dissolution of lithium dendrites during the charging and discharging processes of lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1829-1840. |
| [4] | Yang LENG, Shuo HUANG, Kaixuan GUI, Wenqi YAN, Qi LIU. Study on polyanionic COFs-based composite separators for stabilizing aqueous zinc-ion battery anodes [J]. Energy Storage Science and Technology, 2025, 14(5): 1900-1909. |
| [5] | Dequan HUANG, Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG. Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(4): 1340-1351. |
| [6] | Lei WANG, Shaomian LIU, Fenglan FAN, Ziteng YANG. Structure-activity relationships of fast-growing wood based hard carbon anodes for sodium ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1107-1114. |
| [7] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
| [8] | Yi LIANG, Tao WEI, Guangda YIN, Dequan HUANG. Design of a lithiophilic Ag-3D-Cu electrode and its electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(2): 515-524. |
| [9] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
| [10] | Xunchang JIANG, Kelin YU, Daxiang YANG, Minhui LIAO, Yang ZHOU. Preparation of PDOL-based solid electrolyte by in-situ polymerization and its application in lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 1-12. |
| [11] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
| [12] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
| [13] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
| [14] | Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB [J]. Energy Storage Science and Technology, 2024, 13(2): 381-389. |
| [15] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||