• •
李全龙(), 陶媛媛, 王梦迪, 穆生胧, 张蓉蓉, 倪胜蓝, 刘宗浩(
)
收稿日期:
2025-05-15
修回日期:
2025-06-11
通讯作者:
李全龙,刘宗浩
E-mail:quanlong.li@rongkepower.com;zonghao.liu@rongkepower.com
作者简介:
李全龙(1989—),男,高级工程师,研究方向:液流电池储能技术,E-mail:quanlong.li@rongkepower.com
基金资助:
Quanlong LI(), Yuanyuan TAO, Mengdi WANG, Shenglong MU, Rongrong ZHANG, Shenglan NI, Zonghao LIU(
)
Received:
2025-05-15
Revised:
2025-06-11
Contact:
Quanlong LI, Zonghao LIU
E-mail:quanlong.li@rongkepower.com;zonghao.liu@rongkepower.com
摘要:
离子交换膜、电极、双极板和钒电解液是全钒液流电池的关键材料,对于全钒液流电池的性能和成本具有至关重要的影响。关键材料技术指标是衡量关键材料能否在全钒液流电池中应用的标准,是关键材料供应商出厂检验和全钒液流电池厂商入场质检的重要依据。本文从产业发展和应用角度出发,首先详细介绍了全钒液流电池关键材料的特性需求及相关技术指标内容,以便增强电池上游关键材料供应商对技术指标的理解,指导关键材料开发和优化方向。其次,简要阐述了现阶段关键材料主要类型、生产工艺及其产业发展状况,有助于增强全钒液流电池行业从业人员对上游关键材料供应链情况的了解和把控。另外,从全钒液流电池行业发展角度出发,讨论了关键材料现阶段研究重点以及未来产业化发展要求和方向。本文提出,在保证全钒液流电池性能的前提下,成本指标和寿命指标是关键材料未来产业化关注的核心指标,是降低全钒液流电池系统成本,延长全钒液流电池服役年限,提升全钒液流电池市场竞争力的重要保障。
中图分类号:
李全龙, 陶媛媛, 王梦迪, 穆生胧, 张蓉蓉, 倪胜蓝, 刘宗浩. 全钒液流电池用关键材料技术指标特性需求分析和产业发展状况[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0454.
Quanlong LI, Yuanyuan TAO, Mengdi WANG, Shenglong MU, Rongrong ZHANG, Shenglan NI, Zonghao LIU. Technical Indicator Requirement Analysis and Industrial Development Status of Key Materials for Vanadium Flow Battery[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0454.
表2
碳塑复合双极板的技术指标"
项目 | 测试性能 | 单位 | 指标要求 | |
---|---|---|---|---|
1 | 厚度均匀性 | 平均厚度d≤0.4mm | —— | ≤6%d |
平均厚度0.4<d≤1.0mm | ≤5%d | |||
平均厚度d>1.0mm | ≤4%d | |||
2 | 尺寸偏差(长度和宽度方向) | mm | ≤±1 | |
3 | 电性能 | 体积电阻率a | Ω·cm | ≤0.15 |
表面电阻(垂直于板面方向) | Ω·cm2 | ≤0.10 | ||
与碳毡接触电阻(0.5-0.6MPa) | Ω·cm2 | ≤0.10 | ||
4 | 机械性能 | 抗弯强度 | MPa | ≥20 |
抗拉强度 | MPa | ≥10 | ||
抗压强度 | MPa | ≥20 | ||
5 | 耐久性 | 腐蚀电流密度 | μA·cm-2 | ≤16 |
钒离子扩散系数 | m2·s-1 | ≤5×10-15 | ||
气体透过率 | cm3·cm-2·s-1 | ≤2×10-6 | ||
耐腐蚀性(质量变化) | % | ≤±0.5 | ||
尺寸变化率 | % | ≤±0.5 | ||
a 对于均质双极板材料,实际使用时,也可以用体电导率代替体积电阻率,其值与对应体积电阻率互为倒数。 |
1 | 袁治章,刘宗浩,李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术,2022,11(9):2944-2956. |
YUAN Z Z,LIU Z H,LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9):2944-2956. | |
2 | HU H, HAN M,LIU J, et al. Development status, challenges, and perspectives of key components and systems of all-vanadium redox flow batteries[J]. Future Batteries, 2024, 4:100008-100014. |
3 | LU W, LI X, ZHANG H. The next generation vanadium flow batteries with high power density-a perspective[J]. Phys.Chem.Chem.Phys.,2018, 20:23-35. |
4 | YE J, XIA L, LI H, et al. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries[J]. Advanced Materials, 2024, 36:2402090-2402113. |
5 | QI H, PAN L, SUN J, et al. Detecting and repairing micro defects in perfluorinated ion exchange membranes for redox flow batteries[J]. Journal of Power Sources, 2025, 628:235930-235940. |
6 | 杨正金,左培培,李圆圆等,面向燃料电池和液流电池的高性能离子交换膜[J].膜科学与技术,2021,41(06):162-171+181. |
YANG Z J,ZUO P P,LI Y Y,et al. Advanced ion exchange membranes for fuel cells and aqueous flow batteries[J]. Membrane Science and Technology, 2021, 41(6):162-171+181. | |
7 | MAURITZ K A, MOORE R B. State of Understanding of Nafion[J]. Chem. Rev. 2004, 104, 4535-4585. |
8 | PENG S, WU X, YAN X, et al. Polybenzimidazole membranes with nanophase-separated structure induced by non-ionic hydrophilic side chain for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2018, 6:3895-3905. |
9 | LU W, YUAN Z, LI M, et al. Solvent-Induced Rearrangement of Ion-Transport Channels: A Way to Create Advanced Porous Membranes for Vanadium Flow Batteries[J]. Adv. Funct. Mater. 2017, 1604587. |
10 | PAN L, GUO Z, LI H, et al. High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics[J]. ChemElectroChem, 2024, 11:e202400460. |
11 | JIANG H R, SHYY W, WU M C, et al. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries[J]. Applied Energy, 2019, 233-234:105-113. |
12 | WU L, WANG J, SHEN Y, et al. Electrochemical evaluation methods of vanadium flow battery electrodes[J]. Phys.Chem.Chem.Phys.,2017, 19:14708-14717. |
13 | WEI C, SUN S, MANDLER D, et al. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity[J]. Chem. Soc. Rev., 2019,48:2518-2534. |
14 | ZHANG K, YAN C, TANG A. Unveiling electrode compression impact on vanadium flow battery from polarization perspective via a symmetric cell configuration[J]. Journal of Power Sources, 2020, 479:228816. |
15 | 王庆泰,张赛,王杰敏.全钒液流电池多孔电极非均匀压缩的数值模拟[J].化工进展,2024, 43(6):2940-2949. |
WANG Q T, ZHANG S, WANG J M. Numerical simulation for non-uniform compression of porous electrodes in vanadium flow batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(6):2940-2949. | |
16 | 娄景媛,尤东江,李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J].电化学,2020,26(6):876-884. |
LOU J Y, YOU D J,LI X J. Step-by-Step Modification of Graphite Felt Electrode for Vanadium Redox Flow Battery[J]. J. Electrochem. 2020, 26(6):876-884. | |
17 | 王泓,张开悦. 全钒液流电池碳毡电极的热处理活化研究[J].储能科学与技术,2025,14(2):488-496. |
WANG H, ZHANG K Y. Study on thermal treatment activation of carbon felt electrode for all-vanadium flow batteries[J]. Energy Storage Science and Technology, 2025, 14(2):488-496. | |
18 | 宋建勋. 碳布整体穿刺织物编织工艺与结构参数优化[D].江苏:东南大学,2003. |
SONG J X. Optimization of weaving process and structural parameters of carbon cloth integral puncture fabric[D]. Jiangsu:Southeast University, 2003. | |
19 | 戴纹硕, 郭骞远,陈向南等. 全钒液流电池双极板材料研究进展[J].储能科学与技术,2024,13(4):1310-1325. |
DAI W, GUO Q, CHEN X, et al. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4):1310-1325. | |
20 | 花仕洋,徐增师,余罡等. 膨胀石墨在燃料电池双极板中的应用综述[J]. 船电技术,2018,38(4):11-16. |
HUA S Y, XU Z S,YU G, et al. Review of Expanded Graphite in Fuel Cell Bipolar Plate[J]. Marine Electric & Electronic Engineer, 2018,38(4):11-16. | |
21 | 罗晓宽,侯明,傅云峰等. 质子交换膜燃料电池模压石墨双极板研究[J].电源技术.2008,32(3):174-176. |
LUO X K, HOU M, FUY F, et al. Study on mold pressing graphite bipolar plates for proton-exchange membrane fuel cells[J]. Power Technology Journal, 2008,32(3):174-176. | |
22 | 朱兆武,张旭堃,苏慧等. 全钒液流电池提高电解液浓度的研究与应用现状[J].储能科学与技术,2022,11(11):3439-3446. |
ZHU Z W, ZHANG X K, SU H, et al. Research and application of increasing electrolyte concentration in all vanadium redox flow battery[J]. Energy Storage Science and Technology, 2022,11(11):3439-3446. | |
23 | SKYLLAS-KAZACOS M, CAO L, KAZACOS M, et al. Vanadium Electrolyte Studies for the Vanadium Redox Battery—A Review[J]. ChemSusChem, 2016, 9:1521-1543. |
24 | TIAN W, DU H, WANG J, et al. A Review of Electrolyte Additives in Vanadium Redox Flow Batteries[J]. Materials, 2023, 16:4582. |
25 | RODBY K E, JAFFE R L, OLIVETTI E A, et al. Materials availability and supply chain considerations for vanadium in grid-scale redox flow batteries[J], Journal of Power Sources,2023, 560:232605. |
26 | 张杰,双碳目标下的液流电池储能技术与应用[R],第一届液流电池技术发展论坛,中国上海,2023. |
ZHANG J. Energy storage technology and application of flow batteries under the dual carbon target[R], The First Forum on the Development of Flow Battery Technology, Shanghai, China, 2023. | |
27 | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022,11(9): 2772-2780. |
ZHANG H M. The development,cost analysis with various duration and prospect of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022,11(9): 2772-2780. | |
28 | YAN X, ZHANG C, DAI Y, et al. A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2017, 544:98-107. |
29 | YUAN Z, DAI Q, QIAO L, et al. Highly stable aromatic poly(ether sulfone) composite ion exchange membrane for vanadium flow battery[J]. Journal of Membrane Science, 2017, 541:465-473. |
30 | 杨大伟,董燕青,范镜敏等. 全钒液流电池磺化石墨烯/Nafion复合膜的研究[J].电化学,2015,21(5):407-410. |
YANG D W, DONG Y Q, FAN J M, et al. Sulfonated-Graphene/Nafion Composite Membrane for All Vanadium Flow Batteries[J]. J. Electrochem., 2015, 21(5):407-410. | |
31 | LUO Q, ZHANG H, CHEN J, et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery[J]. Journal of Membrane Science, 2008, 325:553-558. |
32 | 柳东东,林茂才,管涛等. 全钒氧化还原液流电池Nafion/SiO2复合膜的研究[J]. 电化学,2010,16(4):455-459. |
LIU D D, LIN M C, GUAN T, et al. Research on Nafion/SiO2 Composite Membrane in All Vanadium Redox Flow Battery[J]. Electrochemistry, 2010,16(4):455-459. | |
33 | WEI L, ZENG L, HAN M S, et al. Nano TiC electrocatalysts embedded graphite felt for high rate and stable vanadium redox flow batteries[J]. Journal of Power Sources, 2023, 576:233180. |
34 | WANG L, LI S, LI D, et al. 3D flower-like molybdenum disulfide modified graphite felt as a positive material for vanadium redox flow batteries[J]. RSC Adv., 2020, 10:17235-17246. |
35 | XING F, FU Q, XING F, et al. Bismuth Single Atoms Regulated Graphite Felt Electrode Boosting High Power Density Vanadium Flow Batteries[J]. Journal of the American Chemical Society, 2024, 146(38):26024-26033. |
36 | 徐冉,王宝冬,王绍亮等,杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术,2024,13(6),1849-1860. |
XU R, WANG B D, WANG S L, et al. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2024, 13(6):1849-1860. | |
37 | GAO Y, WANG H, MA Q, et al. Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries[J]. Carbon, 2019, 148:9-15. |
38 | 李强,王俊楠,孙红. 钒液流电池石墨毡电极的MWCNTs-COOH-NS修饰[J].储能科学与技术, 2021,10(6):2097-2015. |
LI Q, WANG J N, SUN H. Graphite felt electrode modified with MWCNTs-COOH-NS for vanadium flow battery[J]. Energy Storage Science and Technology, 2021,10(6):2097-2015. | |
39 | JIANG F, LIAO W, AYUKAWA T, et al. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers[J]. Journal of Power Sources, 2021, 482(15):228903 |
40 | LIU Z, WANG B, YU L. Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery[J]. Journal of Energy Chemistry, 2018, 27(5):1369-1375. |
41 | 徐若晨,张江涛,刘明义等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术,2021,40(12):10-17. |
XU R C, ZHANG J T, LIU M Y, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(12):10-17. |
[1] | 刘德帅, 朱慧琴, 孙睿浩, 李蒙, 巩文豪, 李晓辉, 钱伟伟. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. |
[2] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[3] | 史小虎, 黄怡馨, 邹涛, 袁依婷. 星形交联剂交联的磺化聚苯并咪唑膜的制备及其在全钒液流电池中的应用[J]. 储能科学与技术, 2025, 14(4): 1377-1385. |
[4] | 叶涛, 王怡君, 唐子龙, 潘国梁. 全钒液流电池电解液容量衰减及草酸恢复研究[J]. 储能科学与技术, 2025, 14(3): 1177-1186. |
[5] | 肖子信, 张泓, 徐林. 纳米线调控固态电池离子输运与界面[J]. 储能科学与技术, 2025, 14(3): 1026-1039. |
[6] | 李跃林, 刘祉妤, 郭森, 刘晓君, 张蓬亮, 王程程, 梁原, 王锐. 全钒液流电池的电极结构研究进展[J]. 储能科学与技术, 2025, 14(2): 601-612. |
[7] | 王泓, 张开悦. 全钒液流电池碳毡电极的热处理活化研究[J]. 储能科学与技术, 2025, 14(2): 488-496. |
[8] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[9] | 要义杰, 张峻伟, 赵燕君, 梁宏成, 赵冬妮. 界面动力学对钠离子电池低温性能的影响[J]. 储能科学与技术, 2025, 14(1): 30-41. |
[10] | 何忆南, 张锴, 周俊武, 王欣杨, 郑百林. 外部载荷对硅电极锂电池循环性能的影响[J]. 储能科学与技术, 2024, 13(8): 2559-2569. |
[11] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[12] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[13] | 王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269. |
[14] | 李泽珩, 徐磊, 姚雨星, 闫崇, 翟喜民, 郝雪纯, 陈爱兵, 黄佳琦, 别晓非, 孙焕丽, 范丽珍, 张强. 电解液改善锂离子电池低温析锂研究进展[J]. 储能科学与技术, 2024, 13(7): 2192-2205. |
[15] | 汪书苹, 杨献坤, 李昌豪, 曾子琪, 程宜风, 谢佳. 乙基膦酸二乙酯基阻燃宽温域电解液在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(7): 2161-2170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||