储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4321-4329.doi: 10.19799/j.cnki.2095-4239.2025.0464

• 储能测试与评价 • 上一篇    下一篇

储能用锂电池模组的浸没式热安全性能试验研究

张雪奎1(), 张振东1(), 盛雷1, 付林祥1, 朱泽华1, 张晓军2, 张春风2   

  1. 1.上海理工大学机械工程学院,上海 200093
    2.山西潞安太行润滑科技股份有限公司,山西 长治 032612
  • 收稿日期:2025-05-19 修回日期:2025-07-30 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 张振东 E-mail:2628584310@qq.com;usstzzd@usst.edu.cn
  • 作者简介:张雪奎(2000—),男,硕士研究生,研究方向为电池热管理,E-mail:2628584310@qq.com
  • 基金资助:
    国家自然科学基金项目(52472381);国家自然科学青年基金(52206267)

Experimental study on immersion thermal safety performance of lithium-battery module for energy storage

Xuekui ZHANG1(), Zhendong ZHANG1(), Lei SHENG1, Linxiang FU1, Zehua ZHU1, Xiaojun ZHANG2, Chunfeng ZHANG2   

  1. 1.School of Mechanical Engineering, Shanghai University of Technology, Shanghai 200093, China
    2.Shanxi Lu'an ; Taihang Lubrication Technology Co. , Ltd. , Changzhi 032612, Shanxi, China
  • Received:2025-05-19 Revised:2025-07-30 Online:2025-11-28 Published:2025-11-24
  • Contact: Zhendong ZHANG E-mail:2628584310@qq.com;usstzzd@usst.edu.cn

摘要:

针对规模化储能用锂电池模组的热失控传播问题,提出了一种浸没式液冷方案,对储能用280 Ah锂电池模组在不同浸没情境下的热安全性能开展了试验研究,并对比分析了电池模组在浸没与非浸没工况下的热失控传播特征,探讨了浸没冷却对模组热失控过程的调控机制。结果表明,过充触发中间电池热失控后,电池模组在非浸没状态下发生热失控传播,在浸没状态下均未发生热失控传播。随着浸没高度比的增加,电池开阀时间推迟,热失控触发时电池的表面温度降低,但是失控后模组降温加快,热失控传播风险减小。非浸没工况下电池模组的最高温度达635.4 ℃,峰值温升速率为17.5 ℃/s,质量损失率为23.26%;而浸没高度比为100%工况下,最高温度降低至322.6 ℃,峰值温升速率减少至12.3 ℃/s,质量损失率锐减至3.85%,相邻电池峰值温度控制在242.6 ℃以下,并显著抑制热蔓延。对比不同浸没工况发现,浸没高度比超过100%后,上述热失控特征参数没有明显变化。研究结果对浸没式锂电池储能系统的结构设计和优化具有重要参考价值。

关键词: 磷酸铁锂电池, 过充行为, 浸没式液冷, 热失控传播

Abstract:

To address the problem of thermal runaway propagation of lithium battery modules for large-scale energy storage, this paper proposed an immersion liquid cooling scheme. The thermal safety performance of 280 Ah lithium battery modules for energy storage under different immersion conditions was experimentally investigated. The propagation properties of thermal runaway under immersion and non-immersion conditions were compared, and the regulation mechanism of immersion cooling on the thermal runaway process of modules was analyzed. The results show that when overcharging triggers the thermal runaway of the intermediate battery, the battery module undergoes thermal runaway propagation under nonimmersed conditions, whereas no propagation occurs under immersion. Increasing the immersion height ratio delays the opening time of the battery and lowers its surface temperature when the thermal runaway is triggered. However, the cooling of the module is accelerated after the thermal runaway, and the risk of thermal runaway propagation is reduced. Under nonimmersion conditions, the maximum temperature of the battery module reaches 635.4 ℃, with a peak temperature rise rate of 17.5 ℃/s and a mass loss rate of 23.26%. At the immersion height ratio of 100%, the maximum temperature decreases to 322.6 ℃, the peak temperature rise rate reduces to 12.3 ℃/s, and the mass loss rate reduces to 3.85%. Additionally, the peak temperature of adjacent batteries remains below 242.6 ℃, effectively suppressing heat spread. Comparing different immersion conditions, it is found that the above thermal runaway characteristic parameters do not change significantly when the immersion height ratio exceeds 100%. These findings provide valuable guidance for the structural design and optimization of submerged lithium battery energy storage systems.

Key words: lithium iron phosphate battery, overcharge behaviors, immersion cooling, thermal runaway propagation

中图分类号: