| [1] |
权朝明, 孟祥飞, 李世斌, 等. 锂离子电池储能系统安全防控技术研究进展[J]. 电源技术, 2025, 49(1): 26-35.
|
|
QUAN C M, MENG X F, LI S B, et al. Research progress of safety prevention and control technology for lithium ion battery energy storage systems[J]. Chinese Journal of Power Sources, 2025, 49(1): 26-35.
|
| [2] |
党彦宝, 王佩佩, 陈中军, 等. 储能锂电池热安全研究综述[J]. 电源技术, 2025, 49(1): 36-46.
|
|
DANG Y B, WANG P P, CHEN Z J, et al. Review on thermal safety of energy storage lithium batteries[J]. Chinese Journal of Power Sources, 2025, 49(1): 36-46.
|
| [3] |
叶锦昊, 侯军辉, 张正国, 等. 100 Ah磷酸铁锂软包电池的热失控特性及产气行为[J]. 储能科学与技术, 2025, 14(2): 636-647. DOI: 10.19799/j.cnki.2095-4239.2024.0764.
|
|
YE J H, HOU J H, ZHANG Z G, et al. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell[J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. DOI: 10.19799/j.cnki.2095-4239.2024.0764.
|
| [4] |
LIN P, JIN P, HONG J C, et al. Battery voltage and state of power prediction based on an improved novel polarization voltage model[J]. Energy Reports, 2020, 6: 2299-2308. DOI: 10.1016/j.egyr.2020. 08.014.
|
| [5] |
WANG K, WU D J, CHANG C Y, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. DOI: 10.1016/j.jclepro.2023.139992.
|
| [6] |
雷旗开, 余胤, 彭鹏, 等. 隔热材料布局方式对280 Ah磷酸铁锂电池热失控传播抑制效果的影响[J]. 储能科学与技术, 2024, 13(2): 495-502. DOI: 10.19799/j.cnki.2095-4239.2023.0535.
|
|
LEI Q K, YU Y, PENG P, et al. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery[J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. DOI: 10.19799/j.cnki.2095-4239.2023.0535.
|
| [7] |
朱剑杰, 庄园, 欧阳洪生, 等. 浸没液体冷却技术在动力电池热管理中的应用研究进展[J]. 制冷学报, 2025, 46(2): 1-16.
|
|
ZHU J J, ZHUANG Y, OUYANG H S, et al. State of the art immersion liquid cooling technology for power battery thermal management applications[J]. Journal of Refrigeration, 2025, 46(2): 1-16.
|
| [8] |
GOODARZI M, JANNESARI H, AMERI M. Experimental study of Li-ion battery thermal management based on the liquid-vapor phase change in direct contact with the cells[J]. Journal of Energy Storage, 2023, 62: 106834. DOI: 10.1016/j.est.2023.106834.
|
| [9] |
LIU Q, SUN C, ZHANG J S, et al. The electro-thermal equalization behaviors of battery modules with immersion cooling[J]. Applied Energy, 2023, 351: 121826. DOI: 10.1016/j.apenergy. 2023.121826.
|
| [10] |
KANG R X, JIA C X, ZHAO J L, et al. Effects of capacity on the thermal runaway and gas venting behaviors of large-format lithium iron phosphate batteries induced by overcharge[J]. Journal of Energy Storage, 2024, 87: 111523. DOI: 10.1016/j.est.2024.111523.
|
| [11] |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002.
|
| [12] |
HE X F, DU J H, YANG S Z, et al. Research on overcharge thermal runaway behavior analysis and early warning algorithm of ternary lithium battery pack[J]. Journal of Applied Electrochemistry, 2025, 55(2): 273-288. DOI: 10.1007/s10800-024-02184-y.
|
| [13] |
WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI: 10.1016/j.jechem.2020.07.028.
|
| [14] |
ZHU X Q, WANG Z P, WANG C, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Degradation and failure mechanisms[J]. Journal of the Electrochemical Society, 2018, 165(16): A3613-A3629. DOI: 10.1149/2.0161816jes.
|
| [15] |
SUN Y T, LU H F, JIN Y. Experimental and numerical study on mechanical deformation characteristics of lithium iron phosphate pouch battery modules under overcharge conditions[J]. Energy & Fuels, 2021, 35(18): 15172-15184. DOI: 10.1021/acs.energyfuels.1c02308.
|
| [16] |
KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719. DOI: 10.1016/S0378-7753(98)00234-1.
|
| [17] |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|
| [18] |
WANG H W, LIU J, GU Z J, et al. Analysis of the thermal stability of a battery under overcharge and over-discharge[J]. Journal of Physics: Conference Series, 2021, 2009(1): 012022. DOI: 10.1088/1742-6596/2009/1/012022.
|
| [19] |
王兵. 车用锂离子电池热失控规律及预警方法研究[D]. 北京: 北京工业大学, 2021. DOI: 10.26935/d.cnki.gbjgu.2021.000027.
|
|
WANG B. Study on thermal runaway behavior and warning method of lithium-ion battery for electric vehicle[D]. Beijing: Beijing University of Technology, 2021. DOI: 10.26935/d.cnki.gbjgu.2021.000027.
|
| [20] |
顾正建, 陶倩艺, 杨智皋, 等. 磷酸铁锂与三元锂离子电池加热下的热失控行为[J]. 电池, 2024, 54(4): 513-518.DOI:10.19535/j.1001-1579.2024.04.015.
|
|
GU Z J, TAO Q Y, YANG Z G, et al. Thermal runaway behavior of LiFePO4 and ternary Li-ion batteries under heating[J]. Dianchi(Battery Bimonthly), 2024, 54(4): 513-518. DOI:10.19535/j.1001-1579.2024.04.015.
|