1 |
SHOAIB M, THANGADURAI V. Exploring the anionic redox chemistry in cathode materials for high-energy-density sodium-ion batteries[J]. ACS Omega, 2022, 7(39): 34710-34717. DOI: 10.1021/acsomega.2c03883.
|
2 |
郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. DOI: 10.19799/j.cnki.2095-4239.2024.0215.
|
|
HAO D B, LI Y L. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. DOI: 10.19799/j.cnki.2095-4239.2024.0215.
|
3 |
张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. DOI: 10.19799/j.cnki.2095-4239.2022.0413.
|
|
ZHANG K, XU Y L. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. DOI: 10.19799/j.cnki.2095-4239.2022.0413.
|
4 |
LIU Y H, ZHANG Y H, MA J, et al. Challenges and strategies toward practical application of layered transition metal oxide cathodes for sodium-ion batteries[J]. Chemistry of Materials, 2024, 36(1): 54-73. DOI: 10.1021/acs.chemmater.3c02115.
|
5 |
XIAO B W, LIU X, SONG M, et al. A general strategy for batch development of high-performance and cost-effective sodium layered cathodes[J]. Nano Energy, 2021, 89: 106371. DOI: 10.1016/j.nanoen.2021.106371.
|
6 |
LI C, GENG F, HU B, et al. Anionic redox in Na-based layered oxide cathodes: A review with focus on mechanism studies[J]. Materials Today Energy, 2020, 17: 100474. DOI: 10.1016/j.mtener.2020.100474.
|
7 |
HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2020, 577(7791): 502-508. DOI: 10.1038/s41586-019-1854-3.
|
8 |
ZHENG W, LIU Q, WANG Z Y, et al. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 28: 300-306. DOI: 10.1016/j.ensm.2020.03.016.
|
9 |
LI C, ZHAO C, HU B, et al. Unraveling the critical role of Ti substitution in P2-NaxLiyMn1– yO2 cathodes for highly reversible oxygen redox chemistry[J]. Chemistry of Materials, 2020, 32(3): 1054-1063. DOI: 10.1021/acs.chemmater.9b03765.
|
10 |
LI X L, MA C, ZHOU Y N. Transition metal vacancy in layered cathode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2023, 29(22): 2203586. DOI: 10.1002/chem. 202203586.
|
11 |
ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3: 373-386. DOI: 10.1038/s41560-018-0097-0.
|
12 |
YANG L F, LI X, LIU J, et al. Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(16): 6680-6689. DOI: 10.1021/jacs.9b01855.
|
13 |
BEN YAHIA M, VERGNET J, SAUBANÈRE M, et al. Unified picture of anionic redox in Li/Na-ion batteries[J]. Nature Materials, 2019, 18(5): 496-502. DOI: 10.1038/s41563-019-0318-3.
|
14 |
SONG J S, ZHU L Z, LI Y D, et al. W modification of nickel-rich ternary cathode material for efficient lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(1): 010523. DOI: 10.1149/1945-7111/acb0b9.
|
15 |
PIŞKIN B, UYGUR C S, AYDıNOL M K. Morphology effect on electrochemical properties of doped (W and Mo) 622NMC, 111NMC, and 226NMC cathode materials[J]. International Journal of Hydrogen Energy, 2020, 45(14): 7874-7880. DOI: 10.1016/j.ijhydene.2019.07.249.
|
16 |
ZHANG J N, LI Q H, LI Q, et al. Improved electrochemical performances of high voltage LiCoO2 with tungsten doping[J]. Chinese Physics B, 2018, 27(8): 088202. DOI: 10.1088/1674-1056/27/8/088202.
|
17 |
PAHARI D, PURAVANKARA S. On controlling the P2-O2 phase transition by optimal Ti-substitution on Ni- site in P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) cathode for Na-ion batteries[J]. Journal of Power Sources, 2020, 455: 227957. DOI: 10.1016/j.jpowsour.2020.227957.
|
18 |
QIAO Y, GUO S H, ZHU K, et al. Reversible anionic redox activity in Na3RuO4 cathodes: A prototype Na-rich layered oxide[J]. Energy & Environmental Science, 2018, 11(2): 299-305. DOI: 10.1039/C7EE03554C.
|
19 |
PENG B, SUN Z H, ZHAO L P, et al. Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V[J]. Energy Storage Materials, 2021, 35: 620-629. DOI: 10.1016/j.ensm.2020.11.037.
|
20 |
CHEN J, ZOU G Q, DENG W T, et al. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode[J]. Advanced Functional Materials, 2020, 30(46): 2004302. DOI: 10.1002/adfm.202004302.
|
21 |
LI Q Y, ZHOU D, ZHANG L J, et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy[J]. Advanced Functional Materials, 2019, 29(10): 1806706. DOI: 10.1002/adfm. 201806706.
|
22 |
LI Z H, ZHOU C, HUA J H, et al. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability[J]. Advanced Materials, 2020, 32(10): 1907444. DOI: 10.1002/adma.201907444.
|
23 |
RONG X H, XIAO D D, LI Q H, et al. Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers[J]. eScience, 2023, 3(5): 100159. DOI: 10.1016/j.esci.2023.100159.
|
24 |
SU G Q, LI L J, SHI Z, et al. Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries[J]. Applied Surface Science, 2023, 608: 155097. DOI: 10.1016/j.apsusc.2022.155097.
|
25 |
KUMAR V K, GHOSH S, BISWAS S, et al. P2-type Na0.67Mn0.5Fe0.5O2 synthesized by solution combustion method as an efficient cathode material for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(3): 030512. DOI: 10.1149/1945-7111/abe985.
|
26 |
JIANG M D, QIAN G N, LIAO X Z, et al. Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling[J]. Journal of Energy Chemistry, 2022, 69: 16-25. DOI: 10.1016/j.jechem.2022.01.010.
|
27 |
ZHANG L Y, GUAN C H, XIE Y Y, et al. Heteroatom-substituted P2-Na2/3Ni1/4Mg1/12Mn2/3O2 cathode with{010}exposing facets boost anionic activity and high-rate performance for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18313-18323. DOI: 10.1021/acsami.1c24336.
|
28 |
WEN Y F, FAN J J, SHI C G, et al. Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-Type layered composite for sodium-ion batteries[J]. Nano Energy, 2019, 60: 162-170. DOI: 10.1016/j.nanoen.2019.02.074.
|