储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3715-3729.doi: 10.19799/j.cnki.2095-4239.2025.0252

• 储能材料与器件 • 上一篇    下一篇

锂电池低温电解液优化策略:挑战、进展与多维度协同设计

李瑶1(), 薛天杨1, 谢正娇3, 钱骥1,2,3(), 李丽1,2,3,4, 陈人杰1,2,3,4()   

  1. 1.北京市环境科学与工程重点实验室,北京理工大学材料学院,北京 100081
    2.山东省新型 化学储能及智能安全重点实验室,北京理工大学前沿技术研究院,山东 济南 250300
    3.广东省高安全储能系统及智慧微网创新团队,北京理工大学(珠海),广东 珠海 519088
    4.北京电动 汽车协同创新中心,北京 100081
  • 收稿日期:2025-03-16 修回日期:2025-04-06 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 钱骥,陈人杰 E-mail:liyao0029@163.com;jiqian@bit.edu.cn;chenrj@bit.edu.cn
  • 作者简介:李瑶(2000—),女,硕士研究生,研究方向为锂电池电解液改性,E-mail:liyao0029@163.com
  • 基金资助:
    泰山学者工程(tsqn202312312);北京市自然科学基金-小米创新联合基金(L223012);山东省优秀青年科学基金项目(海外)(2023HWYQ-112);中国科协青年人才托举工程(2022QNRC001);国家重点研发计划(2022YFB2502102)

Low-temperature electrolyte optimization for lithium batteries: Challenges, advances, and multidimensional collaborative design

Yao LI1(), Tianyang XUE1, Zhengjiao XIE3, Ji QIAN1,2,3(), Li LI1,2,3,4, Renjie CHEN1,2,3,4()   

  1. 1.Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    2.Shandong Key Laboratory of Advanced Chemical Energy Storage and Intelligent Safety, Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, Shandong, China
    3.Innovative Research Team in High-Safety Energy Storage System and Smart Microgrids of Guangdong Province, Beijing Institute of Technology (Zhuhai), Zhuhai 519088, Guangdong, China
    4.Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
  • Received:2025-03-16 Revised:2025-04-06 Online:2025-10-28 Published:2025-10-20
  • Contact: Ji QIAN, Renjie CHEN E-mail:liyao0029@163.com;jiqian@bit.edu.cn;chenrj@bit.edu.cn

摘要:

随着可再生能源技术的快速发展,锂电池作为高效储能装置在电动汽车、航空航天及军事装备等领域应用广泛。然而,在低温环境下电池性能显著下降,主要表现为离子电导率降低、锂枝晶生长加剧及界面副反应增多,严重限制了其在极端温度场景下的应用。电解液作为锂离子运输过程中必不可少的组成部分,在扩大电化学稳定电位窗口、抑制副反应、优化电池性能等方面发挥着关键作用。本文系统综述了低温电解液的失效机制及多维度协同优化策略,旨在为高性能低温电解液的设计提供理论指导。本文首先从离子传输、电极与电解液界面性质和溶剂化结构三个方面介绍了在低温下导致电解液失效的原因。然后从溶剂、导电锂盐及添加剂三个方面介绍了近年来与锂电池电解液组分调控相关的研究进展。之后介绍新型低温电解液,主要包括弱溶剂化电解液、离子液体电解液、液化气体电解液(LGE)以及局部高浓电解液。结果表明,在低温条件下,调控电解液组分可以改善电池的离子电导率、抑制枝晶生长以及提高电池性能,是解决上述问题最简便、最有效的策略之一。最后,本文还展望了该领域未来的研究方向。

关键词: 锂离子电池, 锂金属电池, 低温电解液, 固体电解质界面, 溶剂化结构

Abstract:

The rapid development of renewable energy technology has led to the increased application of lithium batteries as efficient energy storage devices in electric vehicles, as well as aerospace and military equipment. However, these batteries exhibit significantly decreased performance at low temperatures, mainly because of decreased ionic conductivity, intensified lithium-dendrite growth, and increased interfacial side reactions, which severely limit their applications in extreme-temperature scenarios. Electrolytes, as essential components for lithium-ion transportation, play a key role in expanding the electrochemical stability window, inhibiting side reactions, and optimizing battery performance. In this review, the failure mechanism and multidimensional collaborative-optimization design of low-temperature electrolytes are systematically reviewed to offer theoretical guidance for the design of high-performance low-temperature electrolytes. The causes of electrolyte failures at low temperature are explored from three perspectives: ion transportation, electrode-electrolyte interface properties, and solvation structure. Subsequently, recent strategies for regulating the electrolyte components of lithium batteries are reviewed based on three categories: solvent, conductive lithium salt, and additives. Thereafter, a novel low-temperature electrolyte, which mainly comprises a weak-solvent electrolyte, an ionic-liquid electrolyte, a liquefied-gas electrolyte, and a local high-concentration electrolyte, is developed. The results reveal that an adjustment of the electrolyte composition improves ionic conductivity, inhibits dendrite growth, and enhances low-temperature battery performance, demonstrating one of the simplest and effective strategies for solving the aforementioned issues. Finally, the directions for future related studies are proposed.

Key words: lithium-ion batteries, lithium metal batteries, low-temperature electrolyte, solid-electrolyte interphase, solvation structure

中图分类号: