储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3715-3729.doi: 10.19799/j.cnki.2095-4239.2025.0252
李瑶1(), 薛天杨1, 谢正娇3, 钱骥1,2,3(
), 李丽1,2,3,4, 陈人杰1,2,3,4(
)
收稿日期:
2025-03-16
修回日期:
2025-04-06
出版日期:
2025-10-28
发布日期:
2025-10-20
通讯作者:
钱骥,陈人杰
E-mail:liyao0029@163.com;jiqian@bit.edu.cn;chenrj@bit.edu.cn
作者简介:
李瑶(2000—),女,硕士研究生,研究方向为锂电池电解液改性,E-mail:liyao0029@163.com;
基金资助:
Yao LI1(), Tianyang XUE1, Zhengjiao XIE3, Ji QIAN1,2,3(
), Li LI1,2,3,4, Renjie CHEN1,2,3,4(
)
Received:
2025-03-16
Revised:
2025-04-06
Online:
2025-10-28
Published:
2025-10-20
Contact:
Ji QIAN, Renjie CHEN
E-mail:liyao0029@163.com;jiqian@bit.edu.cn;chenrj@bit.edu.cn
摘要:
随着可再生能源技术的快速发展,锂电池作为高效储能装置在电动汽车、航空航天及军事装备等领域应用广泛。然而,在低温环境下电池性能显著下降,主要表现为离子电导率降低、锂枝晶生长加剧及界面副反应增多,严重限制了其在极端温度场景下的应用。电解液作为锂离子运输过程中必不可少的组成部分,在扩大电化学稳定电位窗口、抑制副反应、优化电池性能等方面发挥着关键作用。本文系统综述了低温电解液的失效机制及多维度协同优化策略,旨在为高性能低温电解液的设计提供理论指导。本文首先从离子传输、电极与电解液界面性质和溶剂化结构三个方面介绍了在低温下导致电解液失效的原因。然后从溶剂、导电锂盐及添加剂三个方面介绍了近年来与锂电池电解液组分调控相关的研究进展。之后介绍新型低温电解液,主要包括弱溶剂化电解液、离子液体电解液、液化气体电解液(LGE)以及局部高浓电解液。结果表明,在低温条件下,调控电解液组分可以改善电池的离子电导率、抑制枝晶生长以及提高电池性能,是解决上述问题最简便、最有效的策略之一。最后,本文还展望了该领域未来的研究方向。
中图分类号:
李瑶, 薛天杨, 谢正娇, 钱骥, 李丽, 陈人杰. 锂电池低温电解液优化策略:挑战、进展与多维度协同设计[J]. 储能科学与技术, 2025, 14(10): 3715-3729.
Yao LI, Tianyang XUE, Zhengjiao XIE, Ji QIAN, Li LI, Renjie CHEN. Low-temperature electrolyte optimization for lithium batteries: Challenges, advances, and multidimensional collaborative design[J]. Energy Storage Science and Technology, 2025, 14(10): 3715-3729.
表1
不同电解液体系的性能参数"
电解液体系 | 离子电导率 | 容量保持率/% | 温度范围/℃ |
---|---|---|---|
碳酸酯电解液 | -30 ℃: ~2.0 mS/cm | -20 ℃下保持95%左右的室温容量 | -20~55[ |
醚类电解液 | -40 ℃: 2~4 mS/cm | -40 ℃下保持66%左右的室温容量 | -70~60[ |
氟化腈类电解液 | 25 ℃: 40.3 mS/cm -70 ℃: 11.9 mS/cm | -80 ℃下保持51%左右的室温容量 | -80~60[ |
弱溶剂化电解液 | -50 ℃: 0.73 mS/cm | -40 ℃下保持87%左右的室温容量 | -60~105[ |
离子液体电解液 | -20 ℃: 1.67 mS/cm | -20 ℃下保持70%以上的室温容量 | -60~100[ |
液化气体电解液(LGE) | -70~60 ℃: >3.5 mS/cm | -60 ℃下保持91%左右的室温容量 | -78~80[ |
局部高浓电解液 | -80 ℃ >0.01 mS/cm | -85 ℃下保持56%的室温容量 | -80~70[ |
[1] | EMBLEMSVÅG J. Wind energy is not sustainable when balanced by fossil energy[J]. Applied Energy, 2022, 305: 117748. DOI: 10.1016/j.apenergy.2021.117748. |
[2] | LANDI B J, GANTER M J, CRESS C D, et al. Carbon nanotubes for lithium ion batteries[J]. Energy & Environmental Science, 2009, 2(6): 638-654. DOI: 10.1039/B904116H. |
[3] | GHOSH A, SHUKLA S, MONISHA M, et al. Sulfur copolymer: A new cathode structure for room-temperature sodium-sulfur batteries[J]. ACS Energy Letters, 2015, 2: 2478-2485. DOI: 10.1021/ACSENERGYLETT.7B00714. |
[4] | AHUJA R, BLOMQVIST A, LARSSON P, et al. Relativity and the lead-acid battery[J]. Physical Review Letters, 2011, 106(1): 018301. DOI: 10.1103/PhysRevLett.106.018301. |
[5] | ZHANG M M, CHEN J Y, LI H, et al. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization[J]. Rare Metals, 2021, 40(2): 249-271. DOI: 10.1007/s12598-020-01499-x. |
[6] | LIU Y, WANG Y, WANG F, et al. Facile synthesis of antimony tungstate nanosheets as anodes for lithium-ion batteries[J]. Nanomaterials, 2019, 9(12): 1689. DOI: 10.3390/nano9121689. |
[7] | WU F X, YUSHIN G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10(2): 435-459. DOI: 10.1039/C6EE02326F. |
[8] | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. DOI: 10.1038/nnano.2017.16. |
[9] | ZHANG S S, XU K, JOW T R. Poly(acrylonitrile-methyl methacrylate) as a non-fluorinated binder for the graphite anode of Li-ion batteries[J]. Journal of Applied Electrochemistry, 2003, 33(11): 1099-1101. DOI: 10.1023/A:1026225001109. |
[10] | VIDAL C, GROSS O, GU R, et al. xEV Li-ion battery low-temperature effects—Review[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4560-4572. DOI: 10.1109/TVT.2019.2906487. |
[11] | RAMPAL N, WEITZNER S E, CHO S, et al. Structural and transport properties of battery electrolytes at sub-zero temperatures[J]. Energy & Environmental Science, 2024, 17(20): 7691-7698. DOI: 10.1039/D4EE01437E. |
[12] | QIN M S, ZENG Z Q, CHENG S J, et al. Challenges and strategies of formulating low-temperature electrolytes in lithium-ion batteries[J]. Interdisciplinary Materials, 2023, 2(2): 308-336. DOI: 10.1002/idm2.12077. |
[13] | THENUWARA A C, SHETTY P P, MCDOWELL M T. Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures[J]. Nano Letters, 2019, 19(12): 8664-8672. DOI: 10.1021/acs.nanolett.9b03330. |
[14] | CHEN S Y, MENG X D, HAN D J, et al. A covalently bonded, LiF-rich solid electrolyte interphase for Li metal batteries with superior low-temperature performance[J]. Chemical Engineering Journal, 2024, 500: 156909. DOI: 10.1016/j.cej.2024.156909. |
[15] | WENG S T, ZHANG X, YANG G J, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries[J]. Nature Communications, 2023, 14: 4474. DOI: 10.1038/s41467-023-40221-0. |
[16] | QIAN Y X, CHU Y L, ZHENG Z T, et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23. DOI: 10.1016/j.ensm. 2021.11.029. |
[17] | LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835. DOI: 10.1021/acsami.7b04099. |
[18] | LI X, BANIS M, LUSHINGTON A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J]. Nature Communications, 2018, 9: 4509. DOI: 10.1038/s41467-018-06877-9. |
[19] | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. DOI: 10.1016/j.jpowsour.2006.06.053. |
[20] | ELIA G A, NOBILI F, TOSSICI R, et al. Nanostructured tin-carbon/LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature[J]. Journal of Power Sources, 2015, 275: 227-233. DOI: 10.1016/j.jpowsour.2014.10.144. |
[21] | SMART M C, RATNAKUMAR B V, CHIN K B, et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157(12): A1361. DOI: 10.1149/1.3501236. |
[22] | FANG Z, YANG Y, ZHENG T L, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte[J]. Energy Storage Materials, 2021, 42: 477-483. DOI: 10.1016/j.ensm.2021.08.002. |
[23] | WEI Y, WANG H, LIN X, et al. Moderate solvation structures of lithium ions for high-voltage lithium metal batteries at -40 ℃[J]. Energy & Environmental Science, 2025, 18(2): 786-798. DOI: 10.1039/D4EE03192J. |
[24] | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. DOI: 10.1038/s41560-019-0474-3. |
[25] | DU L Y, WANG H M, YANG M, et al. Free-standing nanostructured architecture as a promising platform for high-performance lithium-sulfur batteries[J]. Small Structures, 2020, 1(3): 2000047. DOI: 10.1002/sstr.202000047. |
[26] | JIN Q, QI X Q, YANG F Y, et al. The failure mechanism of lithium-sulfur batteries under lean-ether-electrolyte conditions[J]. Energy Storage Materials, 2021, 38: 255-261. DOI: 10.1016/j.ensm.2021. 03.014. |
[27] | PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700260. DOI: 10.1002/aenm. 201700260. |
[28] | SHEN X, LIU H, CHENG X B, et al. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. DOI: 10.1016/j.ensm.2017.12.002. |
[29] | MIKHAYLIK Y V, AKRIDGE J R. Low temperature performance of Li/S batteries[J]. Journal of the Electrochemical Society, 2003, 150(3): A306. DOI: 10.1149/1.1545452. |
[30] | LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627(8002): 101-107. DOI: 10.1038/s41586-024-07045-4. |
[31] | MIN X Q, WANG L, WU Y Z, et al. Overcoming low-temperature challenges in LIBs: The role of anion-rich solvation sheath in strong solvents[J]. Journal of Energy Chemistry, 2025, 106: 63-70. DOI: 10.1016/j.jechem.2025.02.027. |
[32] | LIU X, ZHANG J W, LI J, et al. Steric coordinated electrolytes for fast-charging and low-temperature energy-dense lithium-ion batteries[J]. Angewandte Chemie International Edition, 2025, 64(23): e202502978. DOI: 10.1002/anie.202502978. |
[33] | WANG L, YU F D, QUE L F, et al. 12-Ah-level Li-ion pouch cells enabling fast charging at temperatures between -20 and 50 ℃[J]. Advanced Functional Materials, 2024, 34(48): 2408422. DOI: 10.1002/adfm.202408422. |
[34] | QIN N, CHEN J, LU Y Y, et al. Trace LiBF4 enabling robust LiF-rich interphase for durable low-temperature lithium-ion pouch cells[J]. ACS Energy Letters, 2024, 9(10): 4843-4851. DOI: 10.1021/acsenergylett.4c01616. |
[35] | FENG M, CHEN N, CHEN R. Research progress of low-temperature electrolyte for lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 792. |
[36] | ZHAO Y M, HU Z L, ZHAO Z F, et al. Strong solvent and dual lithium salts enable fast-charging lithium-ion batteries operating from -78 to 60 ℃[J]. Journal of the American Chemical Society, 2023, 145(40): 22184-22193. DOI: 10.1021/jacs.3c08313. |
[37] | SHANGGUAN X H, XU G J, CUI Z L, et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries[J]. Small, 2019, 15(16): 1900269. DOI: 10.1002/smll.201900269. |
[38] | ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. DOI: 10.1016/j.jpowsour.2006.07.074. |
[39] | WANG Y W, LIU J, JI H Q, et al. Optimizing Si─O conjugation to enhance interfacial kinetics for low-temperature rechargeable lithium-ion batteries[J]. Advanced Materials, 2025, 37(3): 2412155. DOI: 10.1002/adma.202412155. |
[40] | KIM K M, LY N V, WON J H, et al. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives[J]. Electrochimica Acta, 2014, 136: 182-188. DOI: 10.1016/j.electacta.2014.05.054. |
[41] | THENUWARA A C, SHETTY P P, KONDEKAR N, et al. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase[J]. ACS Energy Letters, 2020, 5(7): 2411-2420. DOI: 10.1021/acsenergylett.0c01209. |
[42] | LI Z Z, LIAO Y Q, JI H J, et al. A tetrahydropyran-based weakly solvating electrolyte for low-temperature and high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2025, 15(15): 2404120. DOI: 10.1002/aenm.202404120. |
[43] | SHI J L, EHTESHAMI N, MA J L, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429: 67-74. DOI: 10.1016/j.jpowsour.2019.04.113. |
[44] | GAO J X, HAN S Y, HUA H M, et al. Phenyl TrifluoroMethane sulfonate as a novel electrolyte additive for enhancing performance of LiNi0·6Co0·2Mn0·2O2/Graphite cells working in wide temperature ranges[J]. Journal of Power Sources, 2021, 487: 229416. DOI: 10.1016/j.jpowsour.2020.229416. |
[45] | LIN Y C, YUE X P, ZHANG H, et al. Using phenyl methanesulfonate as an electrolyte additive to improve performance of LiNi0.5Co0.2Mn0.3O2/graphite cells at low temperature[J]. Electrochimica Acta, 2019, 300: 202-207. DOI: 10.1016/j.electacta.2019.01.120. |
[46] | LIAO L X, FANG T, ZHOU X G, et al. Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive[J]. Solid State Ionics, 2014, 254: 27-31. DOI: 10.1016/j.ssi.2013.10.047. |
[47] | JURNG S, PARK S, YOON T, et al. Low-temperature performance improvement of graphite electrode by allyl sulfide additive and its film-forming mechanism[J]. Journal of the Electrochemical Society, 2016, 163(8): A1798-A1804. DOI: 10.1149/2.0051609jes. |
[48] | WU Z L, LI S G, ZHENG Y Z, et al. The roles of sulfur-containing additives and their working mechanism on the temperature-dependent performances of Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(11): A2792-A2800. DOI: 10. 1149/2.0331811jes. |
[49] | WANG Z J, ZHANG B. Weakly solvating electrolytes for next-generation lithium batteries: Design principles and recent advances[J]. Energy Materials and Devices, 2023, 1(1): 9370003. DOI: 10.26599/emd.2023.9370003. |
[50] | MA T, NI Y X, WANG Q R, et al. Optimize lithium deposition at low temperature by weakly solvating power solvent[J]. Angewandte Chemie, 2022, 134(39): e202207927. DOI: 10.1002/ange.202207927. |
[51] | LIAO Y Q, ZHOU M Y, YUAN L X, et al. Eco-friendly tetrahydropyran enables weakly solvating "4S" electrolytes for lithium-metal batteries[J]. Advanced Energy Materials, 2023, 13(32): 2301477. DOI: 10.1002/aenm.202301477. |
[52] | ZHOU Q, BOYLE P D, MALPEZZI L, et al. Phase behavior of ionic liquid-LiX mixtures: Pyrrolidinium cations and TFSI– anions-linking structure to transport properties[J]. Chemistry of Materials, 2011, 23(19): 4331-4337. DOI: 10.1021/cm201427k. |
[53] | TSAI W Y, LIN R Y, MURALI S, et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from -50 to 80 ℃[J]. Nano Energy, 2013, 2(3): 403-411. DOI: 10.1016/j.nanoen.2012.11.006. |
[54] | ZHAO Q, CHEN P Y, LI S K, et al. Solid-state polymer electrolytes stabilized by task-specific salt additives[J]. Journal of Materials Chemistry A, 2019, 7(13): 7823-7830. DOI: 10.1039/C8TA12008K. |
[55] | TIAN J R, CUI C J, XIE Q, et al. EMIMBF4-GBL binary electrolyte working at -70 ℃ and 3.7 V for a high performance graphene-based capacitor[J]. Journal of Materials Chemistry A, 2018, 6(8): 3593-3601. DOI: 10.1039/c7ta10474j. |
[56] | XU Y F, LIN W J, GLIEGE M, et al. A dual ionic liquid-based low-temperature electrolyte system[J]. The Journal of Physical Chemistry B, 2018, 122(50): 12077-12086. DOI: 10.1021/acs.jpcb.8b08815. |
[57] | WANG Z C, SUN Y Y, MAO Y Y, et al. Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries[J]. Energy Storage Materials, 2020, 30: 228-237. DOI: 10.1016/j.ensm.2020.05.020. |
[58] | LIN R Y, TABERNA P L, FANTINI S, et al. Capacitive energy storage from –50 to 100 ℃ using an ionic liquid electrolyte[J]. The Journal of Physical Chemistry Letters, 2011, 2(19): 2396-2401. DOI: 10.1021/jz201065t. |
[59] | YIN Y J, YANG Y, CHENG D Y, et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries[J]. Nature Energy, 2022, 7(6): 548-559. DOI: 10.1038/s41560-022-01051-4. |
[60] | YIN Y J, HOLOUBEK J, LIU A, et al. Ultralow-temperature Li/CFx batteries enabled by fast-transport and anion-pairing liquefied gas electrolytes[J]. Advanced Materials, 2023, 35(3): 2207932. DOI: 10.1002/adma.202207932. |
[61] | YANG Y, YIN Y, DAVIES D M, et al. Liquefied gas electrolytes for wide-temperature lithium metalbatteries [J]. Energy & Environmental Science, 2020, 13(7): 2209-19. |
[62] | ZHAO Z F, WANG A X, CHEN A S, et al. Leveraging ion pairing and transport in localized high-concentration electrolytes for reversible lithium metal anodes at low temperatures[J]. Angewandte Chemie International Edition, 2024, 63(45): e202412239. DOI: 10.1002/anie.202412239. |
[63] | LAI P B, DENG X D, ZHANG Y Q, et al. Bifunctional localized high-concentration electrolyte for the fast kinetics of lithium batteries at low temperatures[J]. ACS Applied Materials & Interfaces, 2023, 15(25): 31020-31031. DOI: 10.1021/acsami.3c04747. |
[64] | LU Z, LIU D, DAI K, et al. Tailoring solvation chemistry in carbonate electrolytes for all-climate, high-voltage lithium-rich batteries[J]. Energy Storage Materials, 2023, 57: 316-325. DOI: 10.1016/j.ensm.2023.02.029. |
[65] | JIN C B, YAO N, XIAO Y, et al. Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries[J]. Advanced Materials, 2023, 35(3): 2208340. DOI: 10. 1002/adma.202208340. |
[66] | LIU X, MARIANI A, DIEMANT T, et al. Locally concentrated ionic liquid electrolytes enabling low-temperature lithium metal batteries[J]. Angewandte Chemie International Edition, 2023, 62(31): e202305840. DOI: 10.1002/anie.202305840. |
[1] | 谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, 2025, 14(9): 3521-3529. |
[2] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
[3] | 陈文艳, 贺瑞璘, 常建, 邓永红. 不同形态液态金属电极的储锂机制研究[J]. 储能科学与技术, 2025, 14(9): 3290-3300. |
[4] | 邓拓, 周海平, 刘煜, 刘畅, 李梓恺, 吴孟强. 化学气相沉积法制备硅碳负极的研究进展[J]. 储能科学与技术, 2025, 14(9): 3354-3372. |
[5] | 赵岩, 刘浩, 易宗琳, 李莉, 谢莉婧, 苏方远. FEC与VC在锂离子电池石墨负极界面行为研究[J]. 储能科学与技术, 2025, 14(9): 3249-3258. |
[6] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
[7] | 封居强, 张成知, 陈雨杭. 基于数字孪生的高精度SOC和温度联合估计方法[J]. 储能科学与技术, 2025, 14(9): 3567-3580. |
[8] | 白晓宇, 筵亚静, 张志荣, 孔令丽. 复合石墨锂离子电池性能研究[J]. 储能科学与技术, 2025, 14(9): 3259-3268. |
[9] | 张磊. 锂离子电池储能电站的运行状态监测与评估[J]. 储能科学与技术, 2025, 14(9): 3538-3540. |
[10] | 包新宇, 孔祥栋, 吕桃林, 朱志成, 韩雪冰, 来鑫, 郑岳久, 孙涛. 基于产线大数据的电池内阻预测及快速分选方法[J]. 储能科学与技术, 2025, 14(9): 3541-3551. |
[11] | 杨斌, 杨军, 徐浪, 温浩伟, 刘登锋, 阮殿波. 电容型锂离子电池的球头压痕对其安全性研究[J]. 储能科学与技术, 2025, 14(8): 3090-3099. |
[12] | 张腾, 常国峰. 基于单体特征参数差异的电池组热特性和热一致性研究[J]. 储能科学与技术, 2025, 14(8): 3194-3206. |
[13] | 庞超, 丁爽, 张晓琨, 向勇. 局域高浓度电解质溶剂化结构与离子迁移行为模拟研究[J]. 储能科学与技术, 2025, 14(8): 3207-3215. |
[14] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
[15] | 徐成善, 孙烨, 杨智凯, 赵明强, 李亚伦, 冯旭宁, 王贺武, 卢兰光, 欧阳明高. 储能锂离子电池系统热失控诱发电弧研究进展[J]. 储能科学与技术, 2025, 14(8): 3037-3050. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||