[1] |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
[2] |
何佳丽. 国际锂价波动对中国锂资源供需平衡的影响及对策研究[D]. 南昌: 江西财经大学, 2024. DOI: 10.27175/d.cnki.gjxcu.2024.001134.
|
|
HE J L. Study on the impacts of international price fluctuation of lithium on China's supply-demand balance of lithium and its countermeasures[D]. Nanchang: Jiangxi University of Finance and Economics, 2024. DOI: 10.27175/d.cnki.gjxcu.2024.001134.
|
[3] |
张平, 康利斌, 王明菊, 等. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. DOI: 10.19799/j.cnki.2095-4239.2022.0066.
|
|
ZHANG P, KANG L B, WANG M J, et al. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. DOI: 10.19799/j.cnki.2095-4239.2022.0066.
|
[4] |
北极星储能网. 2024钠电储能规模化应用提速!2025或迎"钠电真元年"[EB/OL]. https://news.bjx.com.cn/html/20250113/1422304.shtml.
|
[5] |
XIAO Y, ZHU Y F, YAO H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials, 2019, 9(19): 1803978. DOI: 10.1002/aenm. 201803978.
|
[6] |
WANG J Q, ZHU Y F, SU Y, et al. Routes to high-performance layered oxide cathodes for sodium-ion batteries[J]. Chemical Society Reviews, 2024, 53(8): 4230-4301. DOI: 10.1039/D3CS00929G.
|
[7] |
HWANG S, LEE Y, JO E, et al. Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18883-18888. DOI: 10.1021/acsami.7b04478.
|
[8] |
SIRENGO K, BABU A, BRENNAN B, et al. Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway[J]. Journal of Energy Chemistry, 2023, 81: 321-338. DOI: 10.1016/j.jechem.2023.02.046.
|
[9] |
SUN Y R, ZHOU P F, LIU S Y, et al. Manipulating Na occupation and constructing protective film of P2-Na0.67Ni0.33Mn0.67O2 as long-term cycle stability cathode for sodium-ion batteries[J]. Journal of Energy Chemistry, 2024, 88: 603-611. DOI: 10.1016/j.jechem. 2023.09.042.
|
[10] |
YUE Y B, JIA Z Z, LI Y Q, et al. Thermal runaway hazards comparison between sodium-ion and lithium-ion batteries using accelerating rate calorimetry[J]. Process Safety and Environmental Protection, 2024, 189: 61-70. DOI: 10.1016/j.psep.2024.06.032.
|
[11] |
MEI W X, CHENG Z X, WANG L B, et al. Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery[J]. Journal of Energy Chemistry, 2025, 102: 18-26. DOI: 10.1016/j.jechem.2024.10.036.
|
[12] |
LI Z Y, CHENG Z X, YU Y, et al. Thermal runaway comparison and assessment between sodium-ion and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2025, 193: 842-855. DOI: 10.1016/j.psep.2024.11.118.
|
[13] |
FENG X N, ZHENG S Q, HE X M, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode[J]. Frontiers in Energy Research, 2018, 6: 126. DOI: 10.3389/fenrg.2018.00126.
|
[14] |
顾正建, 陶倩艺, 杨智皋, 等. 磷酸铁锂与三元锂离子电池加热下的热失控行为[J]. 电池, 2024, 54(4): 513-518. DOI: 10.19535/j.1001-1579.2024.04.015.
|
|
GU Z J, TAO Q Y, YANG Z G, et al. Thermal runaway behavior of LiFePO4 and ternary Li-ion batteries under heating[J]. Battery Bimonthly, 2024, 54(4): 513-518. DOI: 10.19535/j.1001-1579.2024. 04.015.
|
[15] |
MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. DOI: 10.1016/j.rser.2021.110717.
|