张佳明1(✉),施博扬1,林炜琦1,夏佳浩1,何桐1,怡勇3,李永2 (✉),张桥保1 (✉)
出版日期:2025-12-03
发布日期:2025-12-03
通讯作者:
李永,张桥保
E-mail:ydx1112@126.com, zhangqiaobao@xmu.edu.cn
基金资助:ZHANG Jiaming1(✉),SHI Boyang1,LIN Weiqi1,XIA Jiahao1,HE Tong1,YI Yong3,LI Yong2(✉),ZHANG Qiaobao1(✉)
Online:2025-12-03
Published:2025-12-03
Contact:
LI Yong,ZHANG Qiaobao
E-mail:ydx1112@126.com, zhangqiaobao@xmu.edu.cn
摘要: 超高能量密度(>500 Wh/kg)锂金属电池是实现长续航电动汽车、低空经济等实际应用场景的关键电池技术。然而,锂金属枝晶生长以及高电压正极界面副分解等问题极大限制了其实际应用。当前商用电解液难以满足超高能量密度锂金属电池的极端要求,因此,亟需开发具有高界面稳定性、调节均匀锂金属沉积/剥离能力以及快离子传输能力等特性的新型电解液体系。本文首先介绍了能量密度>500 Wh/kg的锂金属电池电芯设计的基本原则,在此基础上,系统总结了近年来超高能量密度锂金属电池新型电解液的设计理念,包括常规浓度电解液的锂盐、溶剂和添加剂设计,局部高浓度电解液的锂盐、主溶剂和稀释剂设计,弱溶剂化电解液设计以及准固态电解质设计等。此外,本文强调了超高能量密度锂金属电池对于电解液在极低注液量下界面稳定性的要求,为未来新型电解液设计提供了理论指导。最后,本文总结了现有电解液设计策略的优缺点,并对该领域未来电解液组分分子结构设计、正极/电解液匹配、高倍率充放电、先进表征技术、电芯安全性等研究方向进行了展望。
中图分类号:
张佳明, 施博扬, 林炜琦, 夏佳浩, 何桐, 怡勇, 李永, 张桥保. 超高能量密度锂金属电池电解液研究进展[J]. 储能科学与技术.
ZHANG Jiaming, SHI Boyang, LIN Weiqi, XIA Jiahao, HE Tong, YI Yong, LI Yong, ZHANG Qiaobao. Progress in Electrolyte Design for Ultrahigh Energy Density Lithium Metal Batteries[J]. Energy Storage Science and Technology.
| [1] Goodenough J B, Park K-S. The Li-Ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167–1176. [2] Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180–186. [3] Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303–4418. [4] Wang H, Yu Z, Kong X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588–616. [5] Hobold G M, Lopez J, Guo R, et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes[J]. Nature Energy, 2021, 6(10): 951–960. [6] Jie Y, Tang C, Xu Y, et al. Progress and Perspectives on the Development of Pouch-Type Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2024, 63(7): e202307802. [7] Yao W, Chouchane M, Li W, et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating[J]. Energy & Environmental Science, 2023, 16(4): 1620–1630. [8] Nam M G, Jeong S W, Yoo P J. Advancing Post-Secondary Batteries under Lean Electrolyte Conditions through Interfacial Modification Strategies[J]. Advanced Energy Materials, 2025, 15(2): 2400035. [9] Yuan S, Kong T, Zhang Y, et al. Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions[J]. Angewandte Chemie International Edition, 2021, 60(49): 25624–25638. [10] Li A-M, Borodin O, Pollard T P, et al. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nature Chemistry, 2024, 16(6): 922–929. [11] Wan H, Xu J, Wang C. Designing electrolytes and interphases for high-energy lithium batteries[J]. Nature Reviews Chemistry, 2024, 8(1): 30–44. [12] Song Q, Naren T, Wang Z, et al. Double Anion Deep Eutectic Electrolyte with Fluoroacetonitrile Cosolvent for High Performance Lithium Metal Battery[J]. Advanced Functional Materials, 2025, n/a(n/a): e16729. [13] Zhu H-P, Zhang Q-F, Chen Z, et al. Recent progress in ether-based electrolytes for high-voltage lithium metal batteries[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(11): 3452–3470. [14] Yu Y, Ling C, Yang J, et al. Self-Healing fluorinated polymer deep eutectic electrolytes for stable lithium metal batteries[J]. Chemical Engineering Journal, 2024, 498: 155376. [15] Niu C, Lee H, Chen S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551–559. [16] Deng W, Dai W, Zhou X, et al. Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg–1 Lithium Metal Battery[J]. ACS Energy Letters, 2021, 6(1): 115–123. [17] Zhang S, Li R, Deng T, et al. Oscillatory solvation chemistry for a 500 Wh kg-1 Li-metal pouch cell[J]. Nature Energy, 2024, 9(10): 1285–1296. [18] Jie Y, Wang S, Weng S, et al. Towards long-life 500 Wh kg-1 lithium metal pouch cells via compact ion-pair aggregate electrolytes[J]. Nature Energy, 2024, 9(8): 987–998. [19] Ji H, Xiang J, Li Y, et al. Liquid–liquid interfacial tension stabilized Li-metal batteries[J]. Nature, 2025, 643(8074): 1255–1262. [20] Li R, Zhang H, Zhang S, et al. Unified affinity paradigm for the rational design of high-efficiency lithium metal electrolytes[J]. Nature Energy, 2025, 10(9): 1155–1165. [21] Huang H, Hu Y, Hou Y, et al. Delocalized electrolyte design enables 600 Wh kg-1 lithium metal pouch cells[J]. Nature, 2025, 644(8077): 660–667. [22] Huang X-Y, Zhao C-Z, Kong W-J, et al. Tailoring polymer electrolyte solvation for 600 Wh kg-1 lithium batteries[J]. Nature, 2025, 646(8084): 343–350. [23] Li T, Zhang X-Q, Shi P, et al. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries[J]. Joule, 2019, 3(11): 2647–2661. [24] Huang Z, Lai J-C, Liao S-L, et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nature Energy, 2023, 8(6): 577–585. [25] Park S, Jin H-J, Yun Y S. Advances in the Design of 3D-Structured Electrode Materials for Lithium-Metal Anodes[J]. Advanced Materials, 2020, 32(51): 2002193. [26] Wan M, Kang S, Wang L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode[J]. Nature Communications, 2020, 11(1): 829. [27] Wang L, Wu Z, Zou J, et al. Li-free Cathode Materials for High Energy Density Lithium Batteries[J]. Joule, 2019, 3(9): 2086–2102. [28] Xiong Q, Li D, Li S, et al. A practical 4.8-V Li||LiCoO2 battery[J]. Science Advances, 11(38): eadx5020. [29] Lyu Y, Wu X, Wang K, et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. [30] Li W, He Z, Jie Y, et al. Understanding and Design of Cathode–Electrolyte Interphase in High-Voltage Lithium–Metal Batteries[J]. Advanced Functional Materials, 2024, 34(45): 2406770. [31] Hao Z, Zhao Q, Tang J, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries[J]. Materials Horizons, 2021, 8(1): 12–32. [32] Tang Z, Li S, Li Y, et al. Lithium metal electrode protected by stiff and tough self-compacting separator[J]. Nano Energy, 2020, 69. [33] Pan R, Xu X, Sun R, et al. Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries[J]. Small, 2018, 14(21): 1704371. [34] Molaiyan P, Abdollahifar M, Boz B, et al. Optimizing Current Collector Interfaces for Efficient "Anode-Free" Lithium Metal Batteries[J]. Advanced Functional Materials, 2024, 34(6): 2311301. [35] Li D, Hu H, Chen B, et al. Advanced Current Collector Materials for High-Performance Lithium Metal Anodes[J]. Small, 2022, 18(24): 2200010. [36] Lu L-L, Ge J, Yang J-N, et al. Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance[J]. Nano Letters, 2016, 16(7): 4431–4437. [37] Guo K, Qi S, Wang H, et al. High-Voltage Electrolyte Chemistry for Lithium Batteries[J]. Small Science, 2022, 2(5): 2100107. [38] Jie Y, Ren X, Cao R, et al. Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries[J]. Advanced Functional Materials, 2020, 30(25): 1910777. [39] Xia L, Miao H, Zhang C, et al. Review—recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 542–570. [40] Jiao S, Ren X, Cao R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739–746. [41] Liu H, Holoubek J, Zhou H, et al. Ultrahigh coulombic efficiency electrolyte enables Li||SPAN batteries with superior cycling performance[J]. Materials Today, 2021, 42: 17–28. [42] Ren X, Zou L, Jiao S, et al. High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries[J]. ACS Energy Letters, 2019, 4(4): 896–902. [43] Piao Z, Gao R, Liu Y, et al. A Review on Regulating Li+ Solvation Structures in Carbonate Electrolytes for Lithium Metal Batteries[J]. Advanced Materials, 2023, 35(15): 2206009. [44] He J, Wang H, Zhou Q, et al. Unveiling the Role of Li+ Solvation Structures with Commercial Carbonates in the Formation of Solid Electrolyte Interphase for Lithium Metal Batteries[J]. Small Methods, 2021, 5(8): 2100441. [45] Liu Y, Lin D, Li Y, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9(1): 3656. [46] Cheng H, Sun Q, Li L, et al. Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries[J]. ACS Energy Letters, 2022, 7(1): 490–513. [47] Zhou J, Wang H, Yang Y, et al. Advanced Liquid Electrolyte Design for High-Voltage and High-Safety Lithium Metal Batteries[J]. Advanced Energy Materials, 2025, 15(34): 2502654. [48] Tan S, Ji Y J, Zhang Z R, et al. Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries[J]. ChemPhysChem, 2014, 15(10): 1956–1969. [49] Wang L, Menakath A, Han F, et al. Identifying the components of the solid–electrolyte interphase in Li-ion batteries[J]. Nature Chemistry, 2019, 11(9): 789–796. [50] Park S, Kim S, Lee J-A, et al. Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes[J]. Chemical Science, 2023, 14(37): 9996–10024. [51] Liu X, Shen X, Luo L, et al. Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule[J]. ACS Energy Letters, 2021, 6(12): 4282–4290. [52] Fan X, Chen L, Borodin O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715–722. [53] Fan X, Wang C. High-voltage liquid electrolytes for Li batteries: progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486–10566. [54] Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. Chemical Reviews, 2014, 114(23): 11503–11618. [55] Li M, Wang C, Chen Z, et al. New Concepts in Electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783–6819. [56] Zheng X, Huang L, Ye X, et al. Critical effects of electrolyte recipes for Li and Na metal batteries[J]. Chem, 2021, 7(9): 2312–2346. [57] Qian J, Henderson W A, Xu W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6(1): 6362. [58] Wang H, Yan X, Zhang R, et al. Application-driven design of non-aqueous electrolyte solutions through quantification of interfacial reactions in lithium metal batteries[J]. Nature Nanotechnology, 2025, 20(8): 1034–1042. [59] Chen S, Zheng J, Mei D, et al. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes[J]. Advanced Materials, 2018, 30(21): 1706102. [60] Chen Y, Yu Z, Rudnicki P, et al. Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery[J]. Journal of the American Chemical Society, 2021, 143(44): 18703–18713. [61] Chen Y, Li M, Liu Y, et al. Origin of dendrite-free lithium deposition in concentrated electrolytes[J]. Nature Communications, 2023, 14(1): 2655. [62] Kim H, Wu F, Lee J T, et al. In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes[J]. Advanced Energy Materials, 2015, 5(6): 1401792. [63] Qian J, Adams B D, Zheng J, et al. Anode-Free Rechargeable Lithium Metal Batteries[J]. Advanced Functional Materials, 2016, 26(39): 7094–7102. [64] Wang J, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3(1): 22–29. [65] Zhang X, Zou L, Cui Z, et al. Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries[J]. Materials Today, 2021, 44: 15–24. [66] Jiang Z, Zeng Z, Liang X, et al. Fluorobenzene, A Low-Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries[J]. Advanced Functional Materials, 2021, 31(1): 2005991. [67] Zhang J, Li Q, Zeng Y, et al. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries[J]. Energy Storage Materials, 2022, 51: 660–670. [68] Park E, Park J, Lee K, et al. Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries[J]. ACS Energy Letters, 2023, 8(1): 179–188. [69] Zhang J, Li Q, Zeng Y, et al. Weakly Solvating Cyclic Ether Electrolyte for High-Voltage Lithium Metal Batteries[J]. ACS Energy Letters, 2023, 8(4): 1752–1761. [70] Yao Y-X, Chen X, Yan C, et al. Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly Solvating Electrolyte**[J]. Angewandte Chemie International Edition, 2021, 60(8): 4090–4097. [71] Ma T, Ni Y, Wang Q, et al. Optimize Lithium Deposition at Low Temperature by Weakly Solvating Power Solvent[J]. Angewandte Chemie International Edition, 2022, 61(39): e202207927. [72] Wu L-Q, Li Z, Fan Z-Y, et al. Unveiling the Role of Fluorination in Hexacyclic Coordinated Ether Electrolytes for High-Voltage Lithium Metal Batteries[J]. Journal of the American Chemical Society, 2024, 146(9): 5964–5976. [73] Zheng J, Fan X, Ji G, et al. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries[J]. Nano Energy, 2018, 50: 431–440. [74] Ren X, Zou L, Cao X, et al. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions[J]. Joule, 2019, 3(7): 1662–1676. [75] Chen S, Zheng J, Yu L, et al. High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes[J]. Joule, 2018, 2(8): 1548–1558. [76] Yu Z, Wang H, Kong X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526–533. [77] Yu Z, Rudnicki P E, Zhang Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94–106. [78] Choi I R, Chen Y, Shah A, et al. Asymmetric ether solvents for high-rate lithium metal batteries[J]. Nature Energy, 2025, 10(3): 365–379. [79] Huang Y, Li R, Weng S, et al. Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries[J]. Energy & Environmental Science, 2022, 15(10): 4349–4361. [80] Cao X, Gao P, Ren X, et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries[J]. Proceedings of the National Academy of Sciences, 2021, 118(9): e2020357118. [81] Wu Z, Li R, Zhang S, et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650–664. [82] Ren X, Chen S, Lee H, et al. Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries[J]. Chem, 2018, 4(8): 1877–1892. [83] Li G-X, Koverga V, Nguyen A, et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent[J]. Nature Energy, 2024, 9(7): 817–827. [84] Lu Y, Cao Q, Zhang W, et al. Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions[J]. Nature Energy, 2025, 10(2): 191–204. [85] Wu J, Wang X, Liu Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries[J]. Nature Communications, 2021, 12(1): 5746. [86] Shi P, Ma J, Liu M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602–610. [87] Wang Z, Xia J, Ji X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nature Energy, 2024, 9(3): 251–262. |
| [1] | 潘立宁, 汪海滨, 方翔, 施萍灏, 谭飞, 赵俊华. 双功能电解液添加剂对钴酸锂高电压锂离子电池性能的影响[J]. 储能科学与技术, 2025, 14(9): 3279-3289. |
| [2] | 赵岩, 刘浩, 易宗琳, 李莉, 谢莉婧, 苏方远. FEC与VC在锂离子电池石墨负极界面行为研究[J]. 储能科学与技术, 2025, 14(9): 3249-3258. |
| [3] | 向靖宇, 钟伟, 程时杰, 谢佳. 助力钠电池储能:预钠化技术研究新进展[J]. 储能科学与技术, 2025, 14(8): 3051-3064. |
| [4] | 班宵汉, 周明霞, 胡洪瑞, 刘富亮, 马东伟, 石斌, 张校刚. 基于纳/微结构钴酸锂颗粒级配正极的超高功率锂离子电池[J]. 储能科学与技术, 2025, 14(8): 2950-2959. |
| [5] | 张文杰, 任东生, 吴宇, 芮新宇, 刘翔, 冯旭宁, 卢兰光. 基于Li10GeP12S2 全固态电池关键材料的热稳定性[J]. 储能科学与技术, 2025, 14(6): 2193-2199. |
| [6] | 梁辰, 邢鹏飞, 吴孟武, 秦训鹏. 锂金属电池充放电过程中锂枝晶生长与溶解的相场模拟研究[J]. 储能科学与技术, 2025, 14(5): 1829-1840. |
| [7] | 刘德帅, 朱慧琴, 孙睿浩, 李蒙, 巩文豪, 李晓辉, 钱伟伟. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. |
| [8] | 金成龙, 孙梦婷, 孟庆飞, 张姝玮, 周舟, 齐宇阳. Li/Cr8O21 电池宽温电解液的设计与应用[J]. 储能科学与技术, 2025, 14(4): 1369-1376. |
| [9] | 岳金明, 刘媛丽, 陈一霞, 禹习谦, 李泓. GC-MS检测锂离子电池电解液分离条件的研究[J]. 储能科学与技术, 2025, 14(4): 1564-1573. |
| [10] | 廖兴群, 杨睿, 于立娟, 胡大林, 肖峰, 胡菁, 卢周广. 多功能电解液添加剂2,6-吡啶二甲腈稳定高电压钴酸锂[J]. 储能科学与技术, 2025, 14(4): 1331-1339. |
| [11] | 黄德权, 韦韬, 殷广达, 闻港, 侯爵, 梁毅. 硅氧烷溶剂应用于高电压锂金属电池及电化学性能[J]. 储能科学与技术, 2025, 14(4): 1340-1351. |
| [12] | 叶涛, 王怡君, 唐子龙, 潘国梁. 全钒液流电池电解液容量衰减及草酸恢复研究[J]. 储能科学与技术, 2025, 14(3): 1177-1186. |
| [13] | 李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009. |
| [14] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
| [15] | 梁振飞, 王兴兴, 胡皓晨, 李艳红, 欧阳博学, 孙晓云, 高瑞茂, 叶骏, 王德仁. 锌溴液流电池电解液与隔膜技术研究进展[J]. 储能科学与技术, 2025, 14(2): 583-600. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||