Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 111-119.doi: 10.19799/j.cnki.2095-4239.2022.0390
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yongzhen CHEN(), Ying HAN, Wenji SONG(), Ziping FENG
Received:
2022-07-12
Revised:
2022-09-26
Online:
2023-01-05
Published:
2023-02-08
Contact:
Wenji SONG
E-mail:chenyz@ms.giec.ac.cn;songwj@ms.giec.ac.cn
CLC Number:
Yongzhen CHEN, Ying HAN, Wenji SONG, Ziping FENG. Research progress of green ammonia energy and ammonia fuel cell[J]. Energy Storage Science and Technology, 2023, 12(1): 111-119.
Table 1
Energy requirement and CO2 footprint of brown ammonia, blue ammonia, and green ammonia based on the conventional high-pressure ammonia synthesis loop"
Item | Energy requirement(GJ/ | CO2 footprint( | Relative investment | ||
---|---|---|---|---|---|
BAT | Potential | BAT | Potential | ||
Brown ammonia | 26 | 26 | 1.6 | 1.6 | 1.0 |
SMR | 26 | 26 | 1.6 | 1.6 | 1.0 |
Naphtha | 35 | — | 2.5 | — | 1.1~1.2 |
Heavy fuel oil | 38 | — | 3.0 | — | 1.5 |
Coal | 42 | — | 3.6 | — | 1.8~2.1 |
Blue ammonia | 33 | 26 | 0.4 | 0.2 | 1.5 |
Byproduct hydrogen | — | — | 1.5~1.6 | 0.6 | — |
SMR with CCS | 33 | 27 | 0.4 | 0.2 | 1.5 |
Coal with CCS | 57 | — | 1.0~2.0 | 0.5 | 2.5~3.0 |
eSMR | — | 26 | — | 1.1 | 1.0 |
Green ammonia | 33 | 26 | 0.1 | 0.0 | 1.2~1.5 |
Low temperature electrolysis | 33 | 31 | 0.1 | 0.0 | 1.2~1.5 |
High temperature electrolysis | — | 26 | — | 0.0 | 1.5~2.0 |
Biomass (with CCS) | — | 33 | 1.1~1.2 | 0.5 | 1.2~3.0 |
Global average | 35 | 27 | 2.0 | 1.4 | — |
1 | WANG M, KHAN M A, MOHSIN I, et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energy & Environmental Science, 2021, 14(5): 2535-2548. |
2 | 徐静颖, 朱鸿玮, 徐义书, 等. 燃煤电站锅炉氨燃烧研究进展及展望[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 55-65. |
XU J Y, ZHU H W, XU Y S, et al. Research progress and prospect of ammonia cofiring in utility coal-fired boiler[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 55-65. | |
3 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU H Z. Ammonia synthesis industry: Past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
4 | ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. |
5 | AGUSTIN V M, RENE B A. Techno-economic challenges of green ammonia as an energy vector[M]. Amsterdam: Elsevier, 2021. |
6 | FRATTINI D, CINTI G, BIDINI G, et al. A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants[J]. Renewable Energy, 2016, 99: 472-482. |
7 | NAYAK-LUKE R M, CESARO Z, BAÑARES-ALCÁNTARA R. Pathways for green ammonia[M]//Techno-Economic Challenges of Green Ammonia as an Energy Vector. Amsterdam: Elsevier, 2021: 27-39. |
8 | 王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业, 2018, 36(6): 13-18. |
WANG M. The status quo and trend of producing hydrogen from new energy[J]. Chemical Industry, 2018, 36(6): 13-18. | |
9 | 李伟, 杨易嘉, 顾亚京, 等. 基于海洋能的海水资源综合利用研究[J]. 中国工程科学, 2019, 21(6): 33-38. |
LI W, YANG Y J, GU Y J, et al. Comprehensive utilization of seawater resources based on ocean energy[J]. Strategic Study of CAE, 2019, 21(6): 33-38. | |
10 | JEERH G, ZHANG M F, TAO S W. Recent progress in ammonia fuel cells and their potential applications[J]. Journal of Materials Chemistry A, 2021, 9(2): 727-752. |
11 | 郭朋彦, 申方, 王丽君, 等. 氨燃料发动机研究现状及发展趋势[J]. 车用发动机, 2016(3): 1-5, 13. |
GUO P Y, SHEN F, WANG L J, et al. Research status and development trend for ammonia-fueled engines[J]. Vehicle Engine, 2016(3): 1-5, 13. | |
12 | 王智化, 余作超, 陈晨霖, 等. 新型零碳氨燃料的燃烧特性研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 24-40, 78. |
WANG Z H, YU Z C, CHEN C L, et al. Research progress on combustion characteristics of new zero carbon ammonia fuel[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 24-40, 78. | |
13 | 夏鑫, 蔺建民, 李妍, 等. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339. |
XIA X, LIN J M, LI Y, et al. Research progress on performance and application of ammonia fuel on engines[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2332-2339. | |
14 | REITER A J, KONG S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97. |
15 | MØRCH C S, BJERRE A, GØTTRUP M P, et al. Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system[J]. Fuel, 2011, 90(2): 854-864. |
16 | 王月姑, 吴崇君, 郑淞生, 等. 氨燃料缓解能源安全及替代天然气的可行性分析[J]. 可再生能源, 2019, 37(7): 949-954. |
WANG Y G, WU C J, ZHENG S S, et al. Feasibility analysis of ammonia energy to relieve energy security and replace natural gas[J]. Renewable Energy Resources, 2019, 37(7): 949-954. | |
17 | 安恩科, 杨霞, 宋尧. 氨作为富氢载体和燃料的应用[J]. 能源技术, 2008, 29(4): 209-211, 239. |
AN E K, YANG X, SONG Y. The application of ammonia as hydrogen carrier and fuel[J]. Energy Technology, 2008, 29(4): 209-211, 239. | |
18 | AFIF A, RADENAHMAD N, CHEOK Q, et al. Ammonia-fed fuel cells: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 822-835. |
19 | 钟绍华, 万桂芹, 严利群. 氨燃料燃烧性能数值模拟与分析[J]. 内燃机工程, 2014, 35(3): 46-51. |
ZHONG S H, WAN G Q, YAN L Q. Numerical simulation and analysis of ammonia fuel combustion characteristics[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(3): 46-51. | |
20 | 刘伟, 王琮, 郭娅, 等. 氨燃料在船舶行业应用及标准需求研究[J]. 中国标准化, 2021(18): 39-43. |
LIU W, WANG C, GUO Y, et al. Research on the application of ammonia fuel and standard development requirements in the shipbuilding industry[J]. China Standardization, 2021(18): 39-43. | |
21 | 王思佳. 零碳航运——氨燃料大有作为[J]. 中国船检, 2021(8): 80-84. |
22 | JO Y S, CHA J, LEE C H, et al. A viable membrane reactor option for sustainable hydrogen production from ammonia[J]. Journal of Power Sources, 2018, 400: 518-526. |
23 | CHA J, JO Y S, JEONG H, et al. Ammonia as an efficient COX-free hydrogen carrier: Fundamentals and feasibility analyses for fuel cell applications[J]. Applied Energy, 2018, 224: 194-204. |
24 | 王源慧. 直接氨燃料电池中的阳极催化剂的研究[D]. 武汉: 中国地质大学, 2021. |
WANG Y H. The study of anode catalysts for direct ammonia fuel cell[D]. Wuhan: China University of Geosciences, 2021. | |
25 | WANG Y H, GU Y C, ZHANG H, et al. Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells[J]. Applied Energy, 2020, 270: doi: 10.1016/j.apenergy.2020.115185. |
26 | WANG Y H, YANG Z H, YANG J, et al. Towards continuous ammonia electro-oxidation reaction on Pt catalysts with weakened adsorption of atomic nitrogen[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21816-21824. |
27 | SIDDIQUI O, DINCER I. A review and comparative assessment of direct ammonia fuel cells[J]. Thermal Science and Engineering Progress, 2018, 5: 568-578. |
28 | MENG G Y, JIANG C R, MA J J, et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen[J]. Journal of Power Sources, 2007, 173(1): 189-193. |
29 | NI M, LEUNG M K H, LEUNG D Y C. Ammonia-fed solid oxide fuel cells for power generation—A review[J]. International Journal of Energy Research, 2009, 33(11): 943-959. |
30 | VAYENAS C G, FARR R D. Cogeneration of electric energy and nitric oxide[J]. Science, 1980, 208(4444): 593-594. |
31 | WOJCIK A, MIDDLETON H, DAMOPOULOS I, et al. Ammonia as a fuel in solid oxide fuel cells[J]. Journal of Power Sources, 2003, 118(1/2): 342-348. |
32 | WANG Y H, YANG J, WANG J X, et al. Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab7b5b. |
33 | KISHIMOTO M, FURUKAWA N, KUME T, et al. Formulation of ammonia decomposition rate in Ni-YSZ anode of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2370-2380. |
34 | YANG J, MOLOUK A F S, OKANISHI T, et al. A stability study of Ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28701-28707. |
35 | SHY S S, HSIEH S C, CHANG H Y. A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements[J]. Journal of Power Sources, 2018, 396: 80-87. |
36 | MIYAZAKI K, MUROYAMA H, MATSUI T, et al. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells[J]. Sustainable Energy & Fuels, 2020, 4(10): 5238-5246. |
37 | AOKI Y, YAMAGUCHI T, KOBAYASHI S, et al. High-efficiency direct ammonia fuel cells based on BaZr0.1Ce0.7Y0.2O3- δ/Pd oxide-metal junctions[J]. Global Challenges, 2017, 2(1): doi: 10.1002/gch2.201700088. |
38 | ZHANG L M, YANG W S. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte[J]. Journal of Power Sources, 2008, 179(1): 92-95. |
39 | NI M, LEUNG D Y C, LEUNG M K H. Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte[J]. Journal of Power Sources, 2008, 183(2): 682-686. |
40 | CHELLAPPA A S, FISCHER C M, THOMSON W J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications[J]. Applied Catalysis A: General, 2002, 227(1/2): 231-240. |
41 | URIBE F A, GOTTESFELD S, ZAWODZINSKI T A. Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance[J]. Journal of the Electrochemical Society, 2002, 149(3): doi: 10.1149/1.1447221. |
42 | ZHANG X Y, PASAOGULLARI U, MOLTER T. Influence of ammonia on membrane-electrode assemblies in polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(22): 9188-9194. |
43 | HALSEID R, VIE P J S, TUNOLD R. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2006, 154(2): 343-350. |
44 | 郭朋彦, 聂鑫鑫, 张瑞珠, 等. 氨燃料电池的研究现状及发展趋势[J]. 电源技术, 2019, 43(7): 1233-1236. |
GUO P Y, NIE X X, ZHANG R Z, et al. Research status and development trend of ammonia fuel cells[J]. Chinese Journal of Power Sources, 2019, 43(7): 1233-1236. | |
45 | HEJZE T, BESENHARD J O, KORDESCH K, et al. Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier[J]. Journal of Power Sources, 2008, 176(2): 490-493. |
46 | COX B, TREYER K. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications[J]. Journal of Power Sources, 2015, 275: 322-335. |
[1] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[2] | Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel [J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065. |
[3] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
[4] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[5] | Linhan XIE, Wanzhong LI, Qianqian ZHANG, Gaoping CAO, Jingyi QIU, Hai MING, Wei FENG. Research advances in plant-power generation technology [J]. Energy Storage Science and Technology, 2022, 11(2): 442-466. |
[6] | Yalin XIONG, Wei LIU, Pengbo GAO, Binqi DONG, Mingsheng ZHAO. Research on the hydrogen energy demand and carbon-reduction path in China's synthetic ammonia industry to achieve the “carbon peak” and “carbon neutrality” goals [J]. Energy Storage Science and Technology, 2022, 11(12): 4048-4058. |
[7] | Pingping LI, Shanshan CHEN, Lulu ZHAO, Mingliang SHI, Yan HUANG, Chufu LI. Test design of integrated gasification solid oxide fuel cell (IG-SOFC) grid-connection technology [J]. Energy Storage Science and Technology, 2021, 10(6): 2039-2045. |
[8] | Zhihao LI, Hao PENG, Yaqin CHEN. Neural network prediction model for temperature distribution of proton exchange membrane fuel cell membrane electrode assembly [J]. Energy Storage Science and Technology, 2021, 10(6): 2053-2059. |
[9] | Tingting HAN, Yuxi WU, Ziheng XIE, Xiuxia MENG, Jinjin ZHANG, Yujiao XIE, Fangyong YU, Naitao YANG. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942. |
[10] | Shouli WEI, Xichao LI, Xiuliang CHANG, Bing CHEN, Zhuo XU, Tao ZHANG, Lili ZHENG, Zuoqiang DAI. Review of development of bipolar plate materials for solid oxide fuel cell [J]. Energy Storage Science and Technology, 2021, 10(6): 1943-1951. |
[11] | Siyan LIU, Bihua HU. Model predictive control for bidirectional DC-DC converter of hydrogen fuel vehicles [J]. Energy Storage Science and Technology, 2021, 10(6): 2046-2052. |
[12] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
[13] | Yuxi WU, Tingting HAN, Ziheng XIE, Lin LI, Yanwen SONG, Jiacang LIANG, Jinjin ZHANG, Fangyong YU, Naitao YANG. Recent progress in direct carbon solid oxide fuel cells: Carbon fuels and reverse Boudouard reaction catalysts [J]. Energy Storage Science and Technology, 2021, 10(6): 1977-1986. |
[14] | Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019. |
[15] | Lina ZHENG, Wenzhong WANG, Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG, Naitao YANG. Three-dimensional printing technologies in the field of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||