Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1875-1883.doi: 10.19799/j.cnki.2095-4239.2024.1092
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhoulan ZENG(), Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU(
)
Received:
2024-11-25
Revised:
2024-12-31
Online:
2025-05-28
Published:
2025-05-21
Contact:
Ying LIU
E-mail:18162583934@163.com;liu_ying@zijinmining.com
CLC Number:
Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883.
1 | 朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209. DOI: 10.19535/j.1001-1579.2018.03.019. |
ZHU L, YAN C Q, NI T L. Research status quo of prelithiation technology for Li-ion battery[J]. Battery Bimonthly, 2018, 48(3): 206-209. DOI: 10.19535/j.1001-1579.2018.03.019. | |
2 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. DOI: 10.19799/j.cnki.2095-4239. 2021.0066. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. DOI: 10.19799/j.cnki.2095-4239.2021.0066. | |
3 | LIU X M, WU Z, XIE L Q, et al. Prelithiation enhances cycling life of lithium-ion batteries: A mini review[J]. Energy & Environmental Materials, 2023, 6(6): e12501. DOI: 10.1002/eem2.12501. |
4 | HOLTSTIEGE F, WILKEN A, WINTER M, et al. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(38): 25905-25918. DOI: 10.1039/c7cp05405j. |
5 | CAO M Y, LIU Z P, ZHANG X, et al. Feasibility of prelithiation in LiFePO4[J]. Advanced Functional Materials, 2023, 33(9): 2210032. DOI: 10.1002/adfm.202210032. |
6 | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. DOI: 10.19799/j.cnki.2095-4239.2023.0337. |
HUANG X W, LI S P, ZHANG X G. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. DOI: 10.19799/j.cnki.2095-4239.2023.0337. | |
7 | 赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. DOI: 10.19799/j.cnki.2095-4239.2020.0340. |
ZHAO H, HAN C, CHENG X L, et al. Research on the capacity fading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461. DOI: 10.19799/j.cnki.2095-4239.2020.0340. | |
8 | WANG F, WANG B, LI J X, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218. DOI: 10.1021/acsnano.0c10664. |
9 | AUGUSTINE A M, SUDARSANAN V, RAVINDRAN P. Suppressing the initial capacity fade in Li-rich Li5FeO4 with anionic redox by partial Co substitution-a first-principles study[J]. Sustainable Energy & Fuels, 2023, 7(6): 1502-1521. DOI: 10. 1039/D2SE01519F. |
10 | HUANG G X, LIANG J N, ZHONG X G, et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries[J]. Nano Research, 2023, 16(3): 3872-3878. DOI: 10.1007/s12274-022-5146-0. |
11 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. DOI: 10.1002/aenm. 201502534. |
12 | ZHU B, WEN N F, WANG J Y, et al. Defect engineering of air-stable Li5FeO4 towards an ultra-high capacity cathode prelithiation additive[J]. Chemical Science, 2024, 15(32): 12879-12888. DOI: 10.1039/D4SC03052D. |
13 | WANG D Z, WANG J S, LI X B, et al. Enhanced prelithiation performance of Li5FeO4 cathode additive and optimized solid electrolyte interface enabled by Mn substitution[J]. Journal of Alloys and Compounds, 2024, 992: 174607. DOI: 10.1016/j.jallcom.2024.174607. |
14 | SONG Z H, FENG K, ZHANG H Z, et al. "Giving comes before receiving": High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor[J]. Nano Energy, 2019, 66: 104175. DOI: 10.1016/j.nanoen.2019.104175. |
15 | LIU X L, LIU J L, PENG J, et al. Addressing the initial lithium loss of lithium ion batteries by introducing pre-lithiation reagent Li5FeO4/C in the cathode side[J]. Electrochimica Acta, 2024, 481: 143918. DOI: 10.1016/j.electacta.2024.143918. |
16 | SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157. DOI: 10.1016/j.jpowsour.2016.05.063. |
17 | GORELIK V S, VODCHITS A I, BI D X, et al. Raman scattering in LiOH and LiOD polycrystals[J]. Inorganic Materials, 2019, 55(3): 271-276. DOI: 10.1134/S0020168519030087. |
18 | 曾林勇. 富锂化合物正极补锂添加剂的制备及电化学性能的研究[D]. 广州: 广东工业大学, 2022. DOI: 10.27029/d.cnki.ggdgu. 2022.001873. |
ZENG L Y. Study on preparation and electrochemical properties of lithium-rich compound cathode prelithiation additive for lithium ion batteries[D]. Guangzhou: Guangdong University of Technology, 2022. DOI: 10.27029/d.cnki.ggdgu.2022.001873. | |
19 | NIU L, WU M L, ZHANG Y L, et al. Surface phosphorylated Li5FeO4 prelithiation additive synergistically improves the air-stability and lithium-ion conductivity[J]. Chemical Engineering Journal, 2024, 498: 155242. DOI: 10.1016/j.cej.2024.155242. |
20 | LI J, ZHU B, LI S H, et al. Air-stable Li6CoO4@Li5FeO4 pre-lithiation reagent in cathode enabling high performance lithium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(8): 080510. DOI: 10.1149/1945-7111/ac18e1. |
21 | ZHANG L H, DOSE W M, VU A D, et al. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. Journal of Power Sources, 2018, 400: 549-555. DOI: 10.1016/j.jpowsour.2018.08.061. |
22 | LIANG L, LUO J, CHEN M, et al. Synthesis and characterization of novel cathode material Li5FeO4 for Li-ion batteries[J]. International Journal of Electrochemical Science, 2013, 8(5): 6393-6398. DOI: 10.1016/S1452-3981(23)14770-5. |
23 | ZHU B, ZHANG W, WANG Q Y, et al. Understanding the air-exposure degradation chemistry of the sacrificial cathode additive Li5FeO4 for Li-ion batteries[J]. Advanced Functional Materials, 2024, 34(22): 2315010. DOI: 10.1002/adfm.202315010. |
24 | LEE S W, KIM H K, KIM M S, et al. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites[J]. Scientific Reports, 2017, 7: 46530. DOI: 10.1038/srep46530. |
25 | ZHANG R W, YANG S J, LI H B, et al. Air sensitivity of electrode materials in Li/Na ion batteries: Issues and strategies[J]. InfoMat, 2022, 4(6): e12305. DOI: 10.1002/inf2.12305. |
26 | 赵丽维, 王粤, 王海波, 等. 2023年中国电池市场分析[J]. 电池, 2024, 54(1): 9-13. DOI:10.19535/j.1001-1579.2024.01.003. |
ZHAO L W, WANG Y, WANG H B, et al. Analysis of China's battery market in 2023[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 9-13. DOI:10.19535/j.1001-1579.2024.01.003. |
[1] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[2] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[3] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[4] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[5] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[6] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[7] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[8] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[9] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[10] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[11] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[12] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
[13] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[14] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
[15] | Hairui WANG, Changyu XU, Guifu ZHU, Xiaojian HOU. A parallel multi cale-featured fusion model for state-of-health estimation of lithium-ion batteries based on relaxation voltage [J]. Energy Storage Science and Technology, 2025, 14(2): 799-811. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||