Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2405-2415.doi: 10.19799/j.cnki.2095-4239.2025.0080
• Energy Storage System and Engineering • Previous Articles Next Articles
Li HE(), Zhaoxing LENG, Zhuangxi TAN(
), Xueyuan LI, Xiaowen WU, Chaoyang CHEN
Received:
2025-01-24
Revised:
2025-02-22
Online:
2025-06-28
Published:
2025-06-27
Contact:
Zhuangxi TAN
E-mail:helifamily@foxmail.com;tanzhuangxi@foxmail.com
CLC Number:
Li HE, Zhaoxing LENG, Zhuangxi TAN, Xueyuan LI, Xiaowen WU, Chaoyang CHEN. Estimation of the state of charge of energy-storage batteries based on adaptive capacity considering the discharge rate[J]. Energy Storage Science and Technology, 2025, 14(6): 2405-2415.
1 | 汤匀, 岳芳, 郭楷模, 等. 下一代电化学储能技术国际发展态势分析[J]. 储能科学与技术, 2022, 11(1): 89-97. DOI: 10.19799/j.cnki.2095-4239.2021.0301. |
TANG Y, YUE F, GUO K M, et al. International development trend analysis of next-generation electrochemical energy storage technology[J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. DOI: 10.19799/j.cnki.2095-4239.2021.0301. | |
2 | 朱文韬, 周杨, 徐艺敏, 等. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. DOI: 10.19799/j.cnki.2095-4239.2024.0690. |
ZHU W T, ZHOU Y, XU Y M, et al. Application and optimization of battery energy storage technology in new energy generation system[J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. DOI: 10.19799/j.cnki.2095-4239.2024.0690. | |
3 | 尹喜阳, 王忠钰, 刘乙召, 等. 面向配电网削峰填谷的5G基站储能调控方法[J]. 电网与清洁能源, 2024, 40(8): 97-102. |
YIN X Y, WANG Z Y, LIU Y Z, et al. Energy storage dispatch of 5G base station energy storage for peak shaving and valley filling of distribution networks[J]. Power System and Clean Energy, 2024, 40(8): 97-102. | |
4 | 廖世强, 张新燕, 刘莎莎, 等. 储能电池一次调频无模型自适应控制策略[J]. 储能科学与技术, 2022, 11(10): 3221-3230. DOI: 10.19799/j.cnki.2095-4239.2022.0269. |
LIAO S Q, ZHANG X Y, LIU S S, et al. Model-free adaptive control strategy for primary frequency modulation of energy storage battery[J]. Energy Storage Science and Technology, 2022, 11(10): 3221-3230. DOI: 10.19799/j.cnki.2095-4239. 2022.0269. | |
5 | 梁继业, 袁至, 王维庆, 等. 基于电池储能系统的综合自适应一次调频策略[J]. 电工技术学报, 2025, 40(7): 2322-2334. DOI: 10.19595/j.cnki.1000-6753.tces.240456. |
LIANG J Y, YUAN Z, WANG W Q, et al. Comprehensive adaptive primary frequency control strategy based on battery energy storage system[J]. Transactions of China Electrotechnical Society, 2025, 40(7): 2322-2334. DOI: 10.19595/j.cnki.1000-6753.tces.240456. | |
6 | 李建林, 郭兆东, 曾伟, 等. 面向调频的锂电池储能建模及仿真分析[J]. 电力系统保护与控制, 2022, 50(13): 33-42. DOI: 10.19783/j.cnki.pspc.226227. |
LI J L, GUO Z D, ZENG W, et al. Modeling and simulation analysis of lithium battery energy storage oriented to frequency modulation[J]. Power System Protection and Control, 2022, 50(13): 33-42. DOI: 10.19783/j.cnki.pspc.226227. | |
7 | 谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. |
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. | |
8 | 寇发荣, 罗希, 门浩, 等. 基于特征优选与改进极限学习机的锂电池SOC估计[J]. 储能科学与技术, 2023, 12(4): 1234-1243. DOI: 10.19799/j.cnki.2095-4239.2022.0704. |
KOU F R, LUO X, MEN H, et al. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine[J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. DOI: 10.19799/j.cnki.2095-4239.2022.0704. | |
9 | 黎冲, 王成辉, 王高, 等. 锂电池SOC估计的实现方法分析与性能对比[J]. 储能科学与技术, 2022, 11(10): 3328-3344. DOI: 10.19799/j.cnki.2095-4239.2022.0078. |
LI C, WANG C H, WANG G, et al. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. DOI: 10.19799/j.cnki.2095-4239.2022.0078. | |
10 | 陈峥, 杨博, 赵志刚, 等. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki.2095-4239.2024.0141. |
CHEN Z, YANG B, ZHAO Z G, et al. State of charge estimation considering lithium battery temperature and aging[J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki.2095-4239.2024.0141. | |
11 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2021.0013. |
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2021.0013. | |
12 | SUN F C, HU X S, ZOU Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J]. Energy, 2011, 36(5): 3531-3540. DOI: 10. 1016/j.energy.2011.03.059. |
13 | 石怡康. 锂电池电荷状态预测的关键技术研究[D]. 成都: 电子科技大学, 2024. DOI: 10.27005/d.cnki.gdzku.2024.003295. |
SHI Y K. Key technology research on state of charge prediction for lithium batteries[D]. Chengdu: University of Electronic Science and Technology of China, 2024. DOI: 10.27005/d.cnki.gdzku. 2024.003295. | |
14 | 陈雨墨. 基于自适应扩展卡尔曼滤波的锂电池SOC估计[D]. 吉林: 东北电力大学, 2024. DOI: 10.27008/d.cnki.gdbdc.2024.000205. |
CHEN Y M. Lithium battery SOC estimation based on adaptive extended Kalman filter[D]. Jilin: Northeast Dianli University, 2024. DOI: 10.27008/d.cnki.gdbdc.2024.000205. | |
15 | 孙金磊, 邹鑫, 顾浩天, 等. 基于FFRLS-EKF联合算法的锂离子电池荷电状态估计方法[J]. 汽车工程, 2022, 44(4): 505-513. DOI: 10.19562/j.chinasae.qcgc.2022.04.006. |
SUN J L, ZOU X, GU H T, et al. State of charge estimation for lithium-ion battery based on FFRLS-EKF joint algorithm[J]. Automotive Engineering, 2022, 44(4): 505-513. DOI: 10.19562/j.chinasae.qcgc.2022.04.006. | |
16 | BHANGU B S, BENTLEY P, STONE D A, et al. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3): 783-794. DOI: 10.1109/TVT.2004.842461. |
17 | XU K K, HE T L, YANG P, et al. A new online SOC estimation method using broad learning system and adaptive unscented Kalman filter algorithm[J]. Energy, 2024, 309: 132920. DOI: 10.1016/j.energy.2024.132920. |
18 | CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: 125375. DOI: 10.1016/j.energy.2022.125375. |
19 | TIAN Y, LAI R C, LI X Y, et al. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789. DOI: 10.1016/j.apenergy.2020.114789. |
20 | ZHAO H Y, LIAO C L, ZHANG C Z, et al. State-of-charge estimation of lithium-ion battery: Joint long short-term memory network and adaptive extended Kalman filter online estimation algorithm[J]. Journal of Power Sources, 2024, 604: 234451. DOI: 10.1016/j.jpowsour.2024.234451. |
21 | 苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873. |
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873. | |
22 | ALMAITA E, ALSHKOOR S, ABDELSALAM E, et al. State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network[J]. Journal of Energy Storage, 2022, 52: 104761. DOI: 10.1016/j.est.2022.104761. |
23 | LIU D L, WANG S L, FAN Y C, et al. An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures[J]. Energy, 2024, 304: 132048. DOI: 10.1016/j.energy.2024.132048. |
24 | CHEN Y, LI C L, CHEN S Z, et al. A combined robust approach based on auto-regressive long short-term memory network and moving horizon estimation for state-of-charge estimation of lithium-ion batteries[J]. International Journal of Energy Research, 2021, 45(9): 12838-12853. DOI: 10.1002/er.6615. |
25 | YANG F F, SONG X B, XU F, et al. State-of-charge estimation of lithium-ion batteries via long short-term memory network[J]. IEEE Access, 2019, 7: 53792-53799. |
26 | 宋洁, 赵雪莹, 朱玉婷, 等. 基于门控神经网络的储能电站荷电状态估计研究[J]. 电工电能新技术, 2022, 41(4): 82-88. |
SONG J, ZHAO X Y, ZHU Y T, et al. Storage battery SOC estimation based on gated recurrent unit neural network and dropout[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(4): 82-88. | |
27 | 罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687. DOI: 10.19562/j.chinasae.qcgc.2020.05.017. |
LUO Y, QI P W, HUANG H, et al. Study on battery SOC estimation by ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687. DOI: 10.19562/j.chinasae.qcgc.2020.05.017. | |
28 | 韦莉, 张世博, 姚勇涛, 等. 基于动态容值修正的混合型超级电容器SOC估计[J]. 中国电机工程学报, 2017, 37(17): 5188-5197, 5239. DOI: 10.13334/j.0258-8013.pcsee.161642. |
WEI L, ZHANG S B, YAO Y T, et al. SOC estimation of hybrid supercapacitor based on dynamic capacitance correction[J]. Proceedings of the CSEE, 2017, 37(17): 5188-5197, 5239. DOI: 10.13334/j.0258-8013.pcsee.161642. | |
29 | 杨斌, 樊立萍, 高迎慧, 等. 高功率锂离子电池放电倍率对容量影响的研究[J]. 机械制造, 2023, 61(8): 1-4, 17. DOI: 10.3969/j.issn. 1000-4998.2023.08.002. |
YANG B, FAN L P, GAO Y H, et al. Study on influence of discharge rate of high-power lithium-ion battery on capacity[J]. Machinery, 2023, 61(8): 1-4, 17. DOI: 10.3969/j.issn.1000-4998. 2023.08.002. | |
30 | 李悦, 李天奇, 秦建华, 等. 18650磷酸铁锂电池不同放电倍率下产热机理研究[J]. 电源技术, 2021, 45(8): 1001-1004. |
LI Y, LI T Q, QIN J H, et al. Study on the heat generation mechanism of 18650 LiFePO4 battery under different discharge rates[J]. Chinese Journal of Power Sources, 2021, 45(8): 1001-1004. | |
31 | 王顺利, 李小霞, 熊莉英, 等. 锂电池等效电路建模与荷电状态估计[M]. 北京: 机械工业出版社, 2021. |
WANG S L, LI X X, XIONG L Y, et al. Lithium battery equivalent circuit modeling and state-of-charge estimation[M]. Beijing: China Machine Press, 2021. | |
32 | LI J, CHENG Y, JIA M, et al. An electrochemical-thermal model based on dynamic responses for lithium iron phosphate battery[J]. Journal of Power Sources, 2014, 255: 130-143. DOI: 10.1016/j.jpowsour.2014.01.007. |
33 | LAI Y Q, DU S L, AI L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049. DOI: 10.1016/j.ijhydene.2015.07.079. |
[1] | Shuang ZHAO, Pengyuan ZHAO, Wanqin DING, Bin LIU, Wendong WANG, Qunfang ZHAI, Xiaolong LI. Research on coupled optimization and regulation of source network load storage multi energy networks based on integrated neural networks [J]. Energy Storage Science and Technology, 2025, 14(5): 2057-2066. |
[2] | Bowen LI, Guangjin ZHAO, Yamin LI, Xiao YANG, Yunxiao ZHANG, Ruifeng DONG, Yuxia HU. Monitoring the aging process of energy storage lithium-ion batteries: Bilayer GeTe thermoelectric sensors [J]. Energy Storage Science and Technology, 2025, 14(4): 1352-1361. |
[3] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[4] | Tingting WANG, Sisheng LI, Wei YU, Fengtian NENG, Xingnan LI, Jialin YANG, Liang XIONG. Wind power prediction based on BP neural network combined with ERA5 data [J]. Energy Storage Science and Technology, 2025, 14(1): 183-189. |
[5] | Yuefeng LI, Weida DING, Yintao WEI, Yong SUN, Qing RAO, Feng XIANG, Yingcong YAO. Research on the influence of key factors on the temperature characteristics of energy storage immersing lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(1): 152-161. |
[6] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Congxin LI, Meiling YUE, Xintong LI, Qinghui XIONG, Xiaoyan LIU. Proton exchange membrane fuel cell aging performance prediction based on conditional neural networks [J]. Energy Storage Science and Technology, 2024, 13(9): 3094-3102. |
[10] | Bin DENG, Haiming HUA, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Deep potential model: Applications and insights for electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2024, 13(9): 2884-2906. |
[11] | Qing LI, Shaowei ZHANG, Silun LUO, Juchen LI, Haichao CHENG, Chenyi LU. A novel automatic underwater vehicle SOC estimator based on BPNN-AUKF at different temperatures [J]. Energy Storage Science and Technology, 2024, 13(4): 1205-1215. |
[12] | Qiquan ZENG, Maji LUO, Yinlong YANG, Qingze HUANG. Life prediction of fuel cells based on the LSTM-UPF hybrid method [J]. Energy Storage Science and Technology, 2024, 13(3): 963-970. |
[13] | Xintian XU, Bixiao ZHANG, Xinlong ZHU, Kaijie YANG. Refined thermal design optimization of energy storage battery system based on battery box openings [J]. Energy Storage Science and Technology, 2024, 13(2): 515-525. |
[14] | Wei YANG, Zhiguo LI, Caiting LAI, Ruirui ZHAO, Yu LI, Yingke ZHOU, Yiling HUANG, Licai ZHU, Wei FENG, Wenlong WANG, Zhongzhi YUAN. Comparative study on self-discharge rate of new CF x lithium primary batteries and recommendations for their use [J]. Energy Storage Science and Technology, 2024, 13(11): 3742-3753. |
[15] | Yuefeng LI, Weipan XU, Yintao WEI, Weida DING, Yong SUN, Feng XIANG, You LYU, Jiaxiang WU, Yan XIA. Thermal design and simulation analysis of an immersing liquid cooling system for lithium-ions battery packs in energy storage applications [J]. Energy Storage Science and Technology, 2024, 13(10): 3534-3544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||