Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2476-2487.doi: 10.19799/j.cnki.2095-4239.2024.1253
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Zheng CHEN1(), Gongdong DUO1, Jiangwei SHEN1, Shiquan SHEN1, Yu LIU2, Fuxing WEI1(
)
Received:
2024-12-30
Revised:
2025-01-15
Online:
2025-06-28
Published:
2025-06-27
Contact:
Fuxing WEI
E-mail:chen@kust.edu.cn;wfx@kust.edu.cn
CLC Number:
Zheng CHEN, Gongdong DUO, Jiangwei SHEN, Shiquan SHEN, Yu LIU, Fuxing WEI. State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM[J]. Energy Storage Science and Technology, 2025, 14(6): 2476-2487.
1 | 彭鹏, 杨瑞鑫, 孙万洲, 等. 基于容量增量分析的锂离子电池容量估计方法[J/OL]. 机械工程学报, 2024: 1-10. (2024-12-13). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXXB20241212014&dbname=CJFD&dbcode=CJFQ. |
PENG P, YANG R X, SUN W Z, et al. Capacity estimation method of lithium-ion battery based on capacity increment analysis[J/OL]. Journal of Mechanical Engineering, 2024: 1-10. (2024-12-13). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXXB20241212014&dbname=CJFD&dbcode=CJFQ. | |
2 | XU Y H, ZHANG H G, YANG Y F, et al. Optimization of energy management strategy for extended range electric vehicles using multi-island genetic algorithm[J]. Journal of Energy Storage, 2023, 61: 106802. DOI: 10.1016/j.est.2023.106802. |
3 | XIA F, TANG C, CHEN J J. Online two-dimensional filter for anti-interference aging features extraction to accurately predict the battery health[J]. Measurement, 2024, 234: 114758. DOI: 10.1016/j.measurement.2024.114758. |
4 | 许培德, 刘康, 康龙云, 等. 基于弛豫电压和BO-DNN的锂离子电池健康状态估计[J/OL]. 电源学报, 2024: 1-14. (2024-12-04). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20241203001&dbname=CJFD&dbcode=CJFQ. |
XU P D, LIU K, KANG L Y, et al. State of health estimation of lithium-ion battery based on relaxation voltage and BO-DNN[J/OL]. Journal of Power Supply, 2024: 1-14. (2024-12-04). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20241203001&dbname=CJFD&dbcode=CJFQ. | |
5 | CHAE S G, BAE S J, OH K Y. State-of-health estimation and remaining useful life prediction of lithium-ion batteries using DnCNN-CNN[J]. Journal of Energy Storage, 2025, 106: 114826. DOI: 10.1016/j.est.2024.114826. |
6 | SUN J, FAN C Q, YAN H Y. SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost[J]. Energy, 2024, 306: 132429. DOI: 10.1016/j.energy.2024.132429. |
7 | 陈峥, 陈洋, 申江卫, 等. 基于优化支持向量回归算法的锂离子电池可用容量估计[J]. 储能科学与技术, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023.0387. |
CHEN Z, CHEN Y, SHEN J W, et al. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023. 0387. | |
8 | SUN H L, SUN J R, ZHAO K, et al. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation[J]. Mathematical Problems in Engineering, 2022, 2022(1): 9645892. DOI: 10.1155/2022/9645892. |
9 | LI X Y, YUAN C G, LI X H, et al. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: 116467. DOI: 10.1016/j.energy.2019.116467. |
10 | LI X, JIANG J C, WANG L Y, et al. A capacity model based on charging process for state of health estimation of lithium ion batteries[J]. Applied Energy, 2016, 177: 537-543. DOI: 10.1016/j.apenergy.2016.05.109. |
11 | BIAN X L, LIU L C, YAN J Y. A model for state-of-health estimation of lithium ion batteries based on charging profiles[J]. Energy, 2019, 177: 57-65. DOI: 10.1016/j.energy.2019.04.070. |
12 | HE J T, WEI Z B, BIAN X L, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 417-426. DOI: 10.1109/TTE.2020.299 4543. |
13 | HE J T, MENG S J, LI X Y, et al. Partial charging-based health feature extraction and state of health estimation of lithium-ion batteries[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 166-174. DOI: 10.1109/JESTPE. 2022.3143831. |
14 | WU C L, FU J C, HUANG X R, et al. Lithium-ion battery health state prediction based on VMD and DBO-SVR[J]. Energies, 2023, 16(10): 3993. DOI: 10.3390/en16103993. |
15 | FU J C, WU C L, WANG J W, et al. Lithium-ion battery SOH prediction based on VMD-PE and improved DBO optimized temporal convolutional network model[J]. Journal of Energy Storage, 2024, 87: 111392. DOI: 10.1016/j.est.2024.111392. |
16 | YUAN Z F, TIAN T, HAO F C, et al. A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries[J]. Journal of Power Sources, 2024, 609: 234697. DOI: 10.1016/j.jpowsour. 2024.234697. |
17 | LI Y, WANG S L, CHEN L, et al. Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries[J]. Energy, 2023, 282: 128776. DOI: 10.1016/j.energy. 2023.128776. |
18 | 王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518. DOI: 10. 19799/j.cnki.2095-4239.2023.0458. |
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. DOI: 10. 19799/j.cnki.2095-4239.2023.0458. | |
19 | 陈峥, 李磊磊, 舒星, 等. 基于改进容量增量分析法的锂电池可用容量估计[J]. 中国公路学报, 2022, 35(8): 20-30. DOI: 10.19721/j.cnki.1001-7372.2022.08.003. |
CHEN Z, LI L L, SHU X, et al. Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35(8): 20-30. DOI: 10.19721/j.cnki.1001-7372.2022.08.003. | |
20 | HE J T, BIAN X L, LIU L C, et al. Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 29: 101400. DOI: 10.1016/j.est.2020. 101400. |
21 | WEN J P, CHEN X, LI X H, et al. SOH prediction of lithium battery based on IC curve feature and BP neural network[J]. Energy, 2022, 261: 125234. DOI: 10.1016/j.energy.2022.125234. |
22 | 陈峥, 彭月, 胡竞元, 等. 基于短期充电数据和增强鲸鱼优化算法的锂离子电池容量预测[J]. 储能科学与技术, 2025, 14(1): 319-330. DOI: 10.19799/j.cnki.2095-4239.2024.0686. |
CHEN Z, PENG Y, HU J Y, et al. Lithium battery capacity prediction based on short-term charging data and an enhanced whale optimization algorithm[J]. Energy Storage Science and Technology, 2025, 14(1): 319-330. DOI: 10.19799/j.cnki.2095-4239.2024.0686. | |
23 | LI Z H, BAI F, ZUO H F, et al. Remaining useful life prediction for lithium-ion batteries based on iterative transfer learning and mogrifier LSTM[J]. Batteries, 2023, 9(9): 448. DOI: 10.3390/batteries9090448. |
24 | ZHU T, WANG S L, FAN Y C, et al. An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition[J]. Energy, 2024, 306: 132464. DOI: 10.1016/j.energy.2024.132464. |
25 | LI X B, FAN D Q, LIU X T, et al. State of health estimation for lithium-ion batteries based on improved bat algorithm optimization kernel extreme learning machine[J]. Journal of Energy Storage, 2024, 101: 113756. DOI: 10.1016/j.est.2024. 113756. |
[1] | Huimin FAN, Haohong PENG, Hui MENG, Menghong TANG, Haohao YI, Jing DING, Jincheng LIU, Chengshan XU, Xuning FENG. Research and simulation analysis of swelling force characteristics in energy storage battery modules [J]. Energy Storage Science and Technology, 2025, 14(6): 2488-2497. |
[2] | Jingjing RUAN, Xiangkun WU, Yonghui LI, Chongchong ZHAO, Shenshen LI, Tongfei WANG, Shengjie LIANG, Guihong GAO. Preparation and performance studies of low-cost graphite thick dry electrodes [J]. Energy Storage Science and Technology, 2025, 14(6): 2248-2255. |
[3] | Chunling WU, Liding WANG, Yong LU, Limin GENG, Hao CHEN, Jinhao MENG. Lithium-ion batteries SOH estimation based on gaussian processed regression optimized by egret swarm optimization [J]. Energy Storage Science and Technology, 2025, 14(6): 2498-2511. |
[4] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
[5] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[6] | Ping DING, Taotao LI, Linfeng ZHENG, Weixiong WU. SOH estimation of real-world power batteries based on Soft-DTW algorithm and multisource reature fusion [J]. Energy Storage Science and Technology, 2025, 14(5): 2081-2097. |
[7] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[8] | Zhiduan CAI, Wuzhe ZHANG, Chengao WU, Jiayang TONG. Lithium battery health state estimation method based on triple VMD decomposition under strong interference [J]. Energy Storage Science and Technology, 2025, 14(4): 1631-1644. |
[9] | Xiaolan WU, Pengjie MA, Zhifeng BAI, Chenglong LIU, Guifang GUO, Jinhua ZHANG. A kind of intelligent PID double-layer active balancing control method for lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(3): 1150-1159. |
[10] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
[11] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[12] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[13] | Xuzhi WU, Jian GUO. An approach for remaining useful life prediction of power battery with improved grey wolf optimized GPR model [J]. Energy Storage Science and Technology, 2025, 14(2): 728-736. |
[14] | Ziheng ZHANG, Mengmeng GENG, Maosong FAN, Yuhong JIN, Jingbing LIU, Kai YANG, Hao WANG. SOH estimation based on distribution of relaxation times for the retired power lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(2): 770-778. |
[15] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||