Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2575-2589.doi: 10.19799/j.cnki.2095-4239.2025.0241
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Wenyuan WENG1(), Bin SHEN2(
), Jiangong ZHU1(
), Yang WANG2, Huapeng LU2, Wuliyasu HE2, Haonan LIU1, Haifeng DAI1, Xuezhe WEI1
Received:
2025-03-14
Revised:
2025-04-06
Online:
2025-07-28
Published:
2025-07-11
Contact:
Bin SHEN, Jiangong ZHU
E-mail:2332933@tongji.edu.cn;bin.shen@volvocars.com;zhujiangong@tongji.edu.cn
CLC Number:
Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods[J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589.
Fig. 4
(a) Schematic diagram of a three-electrode cell; (b) Principle of anode potential measurement; (c) Experimental results under different combinations of temperature, cut-off voltage, and charging rate;(d) Schematic of CE versus charging C rate with both the time-dependent and charging C rate-dependent resolved curves (bottom) and the resulting CE versus rate curve (top) at different temperatures"
Fig. 7
(a) Three stages of lithium plating; (b) Safety boundary for lithium plating in lithium-ion batteries; (c) Schematic diagram of the boundary between lithium intercalation into graphite and lithium deposition at 0 ℃, the “ x ” symbol represents the inflection points of charge transfer resistance changes at different charging rates at 0 ℃, and the black and red lines are obtained by fitting these inflection points; (d) DSC curve; (e) DSC results of the negative electrodes of different N/P batteries; (f) Critical temperature diagram for battery thermal runaway; (g) Predicted safety status of different N/P batteries based on a warning temperature of 70 ℃, with the safety boundary extended to different charging rates to provide scientific guidance for fast charging, and the green area shown in the figure can serve as a reference for battery design"
[1] | LIU K L, WEI Z B, ZHANG C H, et al. Towards long lifetime battery: AI-based manufacturing and management[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1139-1165. |
[2] | LIU Q Q, DU C Y, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6(91): 88683-88700. DOI: 10.1039/C6RA19482F. |
[3] | YANG X G, GE S, LIU T, et al. A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells [J]. Electrochemical Energy Storage, 2018, 395: 251-61. |
[4] | WHITEHEAD A H, PERKINS M, OWEN J R. A graphical aid to evaluation of carbon-based Li-ion electrodes [J]. Journal of the Electrochemical Society, 1997, 144(4): L92-L94. DOI:10.1149/1. 1837564. |
[5] | VERBRUGGE M W, KOCH B J. The effect of large negative potentials and overcharge on the electrochemical performance of lithiated carbon[J]. Journal of Electroanalytical Chemistry, 1997, 436(1/2): 1-7. DOI: 10.1016/S0022-0728(97)00031-4. |
[6] | JEON Y, KANG S J, JOO S H, et al. Pyridinic-to-graphitic conformational change of nitrogen in graphitic carbon nitride by lithium coordination during lithium plating[J]. Energy Storage Materials, 2020, 31: 505-514. DOI: 10.1016/j.ensm.2020.06.041. |
[7] | CHEN K H, WOOD K N, KAZYAK E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A, 2017, 5(23): 11671-11681. DOI: 10.1039/C7TA00371D. |
[8] | JIANG Y, WANG Z X, XU C X, et al. Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating[J]. Energy Storage Materials, 2020, 28: 17-26. DOI: 10.1016/j.ensm.2020.01.019. |
[9] | YANG T Z, SUN Y W, QIAN T, et al. Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer[J]. Energy Storage Materials, 2020, 26: 385-390. DOI: 10. 1016/j.ensm.2019.11.009. |
[10] | CHEN R, MIAO S, JIA Y, et al. A review of detecting Li plating on graphite anodes based on electrochemical methods[J]. Journal of Materials Chemistry A, 2024, 12(48): DOI:10.1039/D4TA05871B. |
[11] | LIU S, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources, 2014, 261: 285-291.DOI:10.1016/j.jpowsour. 2014.03.083. |
[12] | 邓林旺, 冯天宇, 舒时伟,等. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. DOI: 10.19799/j.cnki. 2095-4239.2022.0428. |
DENG L W, FENG T Y, SHU S W, et al. Nondestructive lithium plating online detection for lithium-ion batteries: A review[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. DOI: 10.19799/j.cnki.2095-4239.2022.0428. | |
[13] | 王羽, 周星, 王睿茜, 等. 面向BMS应用的锂离子电池析锂诊断方法综述[J]. 中国电机工程学报, 2024, 44(21): 8444-8462. DOI: 10. 13334/j.0258-8013.pcsee.230872. |
WANG Y, ZHOU X, WANG R X, et al. Lithium plating detection methods in Li-ion batteries for battery management system application: A review[J]. Proceedings of the CSEE, 2024, 44(21): 8444-8462. DOI: 10.13334/j.0258-8013.pcsee.230872. | |
[14] | 陈佳慧, 王飞, 危荃, 等. 锂电池安全性能无损检测技术研究进展[J]. 无损检测, 2022, 44(12): 72-75. |
CHEN J H, WANG F, WEI Q, et al. Research progress on nondestructive testing technology of lithium battery safety performance[J]. Nondestructive Testing, 2022, 44(12): 72-75. | |
[15] | LIU X M, ARNOLD C B. Effects of current density on defect-induced capacity fade through localized plating in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(13): 130519. DOI: 10.1149/1945-7111/abb838. |
[16] | ZHAO X C, YIN Y L, HU Y, et al. Electrochemical-thermal modeling of lithium plating/stripping of Li(Ni0.6Mn0.2Co0.2)O2/carbon lithium-ion batteries at subzero ambient temperatures[J]. Journal of Power Sources, 2019, 418: 61-73. DOI: 10.1016/j.jpowsour. 2019.02.001. |
[17] | REN D S, SMITH K, GUO D X, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of the Electrochemical Society, 2018, 165(10): A2167-A2178. DOI: 10.1149/2.0661810jes. |
[18] | YANG X, ZHANG G, GE S, et al. Fast charging of lithium-ion batteries at all temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: DOI:10.1073/pnas.1807115115. |
[19] | WALDMANN T, HOGG B I, WOHLFAHRT MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells—A review [J]. Journal of Power Sources, 2018, 384: 107-124. DOI:10.1016/j.jpowsour.2018.02.063. |
[20] | TANIM T R, DUFEK E J, DICKERSON C C, et al. Electrochemical quantification of lithium plating: Challenges and considerations[J]. Journal of the Electrochemical Society, 2019, 166(12): A2689-A2696. DOI: 10.1149/2.1581912jes. |
[21] | RANGARAJAN S P, BARSUKOV Y, P P M. In operando signature and quantification of lithium plating[J]. Journal of Materials Chemistry A, 2019, 7(36): 20683-20695.DOI:10.1039/C9TA07314K. |
[22] | ZHANG L, ZHANG Z C, REDFERN P C, et al. Molecular engineering towards safer lithium-ion batteries: A highly stable and compatible redox shuttle for overcharge protection[J]. Energy & Environmental Science, 2012, 5(8): 8204-8207. DOI: 10.1039/C2EE21977H. |
[23] | JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overcharge and aging analytics of Li-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090547. DOI: 10.1149/1945-7111/ab9569. |
[24] | COSBY M R, CARIGNAN G M, LI Z, et al. operando synchrotron studies of inhomogeneity during anode-free plating of Li metal in pouch cell batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): 020571. DOI: 10.1149/1945-7111/ac5345. |
[25] | BLOOM I D, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application [J]. Journal of Power Sources, 2005, 139(1/2): 295-303. DOI:10.1016/j.jpowsour.2004.07.022. |
[26] | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries [J]. Journal of Power Sources, 2014, 254(15): 80-87.DOI:10.1016/j.jpowsour.2013.12.060. |
[27] | O'KANE S E J, CAMPBELL I D, MARZOOK M W J, et al. Physical origin of the differential voltage minimum associated with lithium plating in Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(9): 090540. DOI: 10.1149/1945-7111/ab90ac. |
[28] | CAMPBELL I D, MARZOOK M, MARINESCU M, et al. How observable is lithium plating? Differential voltage analysis to identify and quantify lithium plating following fast charging of cold lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(4): A725-A739. DOI: 10.1149/2.0821904jes. |
[29] | UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources, 2015, 279: 428-438. DOI: 10.1016/j.jpowsour. 2015.01.046. |
[30] | KATZER F, JAHN L, HAHN M, et al. Model-based lithium deposition detection method using differential voltage analysis[J]. Journal of Power Sources, 2021, 512: DOI: 10.1016/j.jpowsour. 2021.230449. |
[31] | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as In-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. DOI: 10.1016/j.jpowsour.2015.11.044. |
[32] | KOLETI U R, DINH T Q, MARCO J. A new on-line method for lithium plating detection in lithium-ion batteries [J]. Journal of Power Sources, 2020, 451: DOI:10.1016/j.jpowsour.2020.227798. |
[33] | JANAKIRAMAN U, GARRICK T R, FORTIER M E. Review-lithium plating detection methods in Li-ion batteries[J]. Journal of The Electrochemical Society, 2020, 167(16): DOI:10.1149/1945-7111/abd3b8. |
[34] | ANSEÁN D, DUBARRY M, DEVIE A, et al. operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule[J]. Journal of Power Sources, 2017, 356: 36-46. DOI: 10.1016/j.jpowsour. 2017.04.072. |
[35] | YOU H Z, JIANG B, ZHU J G, et al. In-situ quantitative detection of irreversible lithium plating within full-lifespan of lithium-ion batteries[J]. Journal of Power Sources, 2023, 564: 232892. DOI: 10.1016/j.jpowsour.2023.232892. |
[36] | HE J T, BIAN X L, LIU L C, et al. Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 29: 101400. DOI: 10.1016/j.est.2020. 101400. |
[37] | BLANC F, LESKES M, GREY C P. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells[J]. Accounts of Chemical Research, 2013, 46(9):1952-63.DOI:10.1021/ar400022u. |
[38] | XIE P, PENG Y M, LIU X B, et al. Electronegative graphene film based interface-chemistry regulation for stable lithium metal batteries[J]. Chemical Engineering Journal, 2023, 478: 147304. DOI: 10.1016/j.cej.2023.147304. |
[39] | ARAI J, OKADA Y, SUGIYAMA T, et al. In situ solid state 7Li NMR observation of lithium metal deposition during overcharge in lithium ion battery[J]. Journal of the Electrochemical Society, 2014, 62(1): 159-187. |
[40] | HSIEH Y C, LEIßING M, NOWAK S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Physical Science, 2020, 1(8): 100139. DOI: 10.1016/j.xcrp.2020.100139. |
[41] | KITADA K, PECHER O, MAGUSIN P C M M, et al. Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR spectroscopy[J]. Journal of the American Chemical Society, 2019, 141(17): 7014-7027. DOI: 10.1021/jacs.9b01589. |
[42] | HOPE M A, RINKEL B L D, GUNNARSDÓTTIR A B, et al. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nature Communications, 2020, 11: 2224. DOI: 10.1038/s41467-020-16114-x. |
[43] | GEISE N R, KASSE R M, WEKER J N, et al. Quantification of efficiency in lithium metal negative electrodes via operando X-ray diffraction[J]. Chemistry of Materials: A Publication of the American Chemistry Society, 2021, 33(18): 7537-7545. |
[44] | PAUL P P, THAMPY V, CAO C T, et al. Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries[J]. Energy & Environmental Science, 2021, 14(9): 4979-4988. DOI: 10.1039/D1EE01216A. |
[45] | SADD M, XIONG S Z, BOWEN J R, et al. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy[J]. Nature Communications, 2023, 14: 854. DOI: 10.1038/s41467-023-36568-z. |
[46] | TAIWO O O, FINEGAN D P, PAZ-GARCIA J M, et al. Investigating the evolving microstructure of lithium metal electrodes in 3D using X-ray computed tomography[J]. Physical Chemistry Chemical Physics, 2017, 19(33): 22111-22120. DOI: 10.1039/C7CP02872E. |
[47] | BURNS J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision Coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): A959-A964. DOI: 10.1149/2.0621506jes. |
[48] | TALIAN S D, BOBNAR J, SINIGOJ A R, et al. Transmission line model for description of the impedance response of Li electrodes with dendritic growth [J]. National Institute of Chemistry, 2019, 123(46): 27997-28007. |
[49] | KOSEOGLOU M, TSIOUMAS E, FERENTINOU D, et al. Lithium plating detection using dynamic electrochemical impedance spectroscopy in lithium-ion batteries[J]. Journal of Power Sources, 2021, 512: 230508. DOI: 10.1016/j.jpowsour.2021.230508. |
[50] | WALDMANN T, HOGG B I, KASPER M, et al. Interplay of operational parameters on lithium deposition in lithium-ion cells: Systematic measurements with reconstructed 3-electrode pouch full cells[J]. Journal of the Electrochemical Society, 2016, 163(7): A1232-A1238. DOI: 10.1149/2.0591607jes. |
[51] | RANGARAJAN S P, BARSUKOV Y, MUKHERJEE P P. In operando signature and quantification of lithium plating[J]. Journal of Materials Chemistry A, 2019, 7(36): 20683-20695. DOI: 10.1039/C9TA07314K. |
[52] | ABRAHAM D P, POPPEN S D, JANSEN A N, et al. Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells[J]. Electrochimica Acta, 2004, 49(26): 4763-4775. DOI: 10.1016/j.electacta.2004. 05.040. |
[53] | MANTIA F L, WESSELLS C D, DESHAZER H D, et al. Reliable reference electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 31: 141-144. DOI: 10.1016/j.elecom. 2013.03.015. |
[54] | YANG F F, SONG X B, DONG G Z, et al. A Coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries[J]. Energy, 2019, 171: 1173-1182. DOI: 10.1016/j.energy. 2019.01.083. |
[55] | TANIM T R, DUFEK E J, DICKERSON C C, et al. Electrochemical quantification of lithium plating: Challenges and considerations[J]. Journal of the Electrochemical Society, 2019, 166(12): A2689-A2696. DOI: 10.1149/2.1581912jes. |
[56] | PELED E, MENKIN S. Review-SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. DOI: 10.1149/2.1441707jes. |
[57] | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. DOI: 10.1016/j.jpowsour.2014.11.065. |
[58] | PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017, 360: 301-318. DOI: 10.1016/j.jpowsour.2017. 03.042. |
[59] | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as In-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. DOI: 10.1016/j.jpowsour.2015.11.044. |
[60] | BROWN D E, MCSHANE E J, KONZ Z M, et al. Detecting onset of lithium plating during fast charging of Li-ion batteries using operando electrochemical impedance spectroscopy[J]. Cell Reports Physical Science, 2021, 2(10): 100589. DOI: 10.1016/j.xcrp.2021.100589. |
[61] | WANG P, QU W J, SONG W L, et al. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(27): 1900950. DOI: 10.1002/adfm.201900950. |
[62] | HUANG W X, YE Y S, CHEN H, et al. Onboard early detection and mitigation of lithium plating in fast-charging batteries[J]. Nature Communications, 2022, 13: 7091. DOI: 10.1038/s41467-022-33486-4. |
[63] | KIM S, RAJ A, LI B, et al. Correlation of electrochemical and mechanical responses: Differential analysis of rechargeable lithium metal cells[J]. Journal of Power Sources, 2020, 463: 228180. DOI: 10.1016/j.jpowsour.2020.228180. |
[64] | BITZER B, GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness [J]. Journal of Power Sources, 2014, 262(4): 297-302. DOI:10.1016/j.jpowsour.2014. 03.142. |
[65] | WINTER E, SCHMIDT T J, TRABESINGER S. Potentiostatic lithium plating as a fast method for electrolyte evaluation in lithium metal batteries[J]. Electrochimica Acta, 2023, 439: 141547. DOI: 10.1016/j.electacta.2022.141547. |
[66] | RIEGER B, SCHUSTER S F, ERHARD S V, et al. Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells[J]. Journal of Energy Storage, 2016, 8: 1-5. DOI: 10.1016/j.est.2016.09.002. |
[67] | GRIMSMANN F, GERBERT T, BRAUCHLE F, et al. Determining the maximum charging currents of lithium-ion cells for small charge quantities[J]. Journal of Power Sources, 2017, 365: 12-16. DOI: 10.1016/j.jpowsour.2017.08.044. |
[68] | ESCHER I, A FERRERO G, GOKTAS M, et al. In situ (operando) electrochemical dilatometry as a method to distinguish charge storage mechanisms and metal plating processes for sodium and lithium ions in hard carbon battery electrodes[J]. Advanced Materials Interfaces, 2022, 9(8): 2100596. DOI: 10.1002/admi. 202100596. |
[69] | TIAN Y, LIN C, LI H L, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries—A review on the in situ methods[J]. Applied Energy, 2021, 300: 117386. DOI: 10.1016/j.apenergy.2021.117386. |
[70] | CAI W, YAN C, YAO Y X, et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries[J]. Angewandte Chemie, 2021, 60(23): 13007-13012. DOI:10.1002/anie.202102593. |
[71] | LIN Y, HU W, DING M, et al. Unveiling the three stages of Li plating and dynamic evolution processes in pouch C/LiFePO4 batteries[J]. Advanced Energy Materials. 2024, 2400894.https://doi.org/10.1002/aenm.202400894. |
[72] | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. DOI: 10.1016/j.apenergy.2018.06.126. |
[73] | FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 432-439. DOI: 10.1016/j.jpowsour.2014.08.135. |
[74] | LI H, JI W J, ZHANG P, et al. Safety boundary of power battery based on quantitative lithium deposition[J]. Journal of Energy Storage, 2022, 52: 104789. DOI: 10.1016/j.est.2022.104789. |
[75] | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009. |
[76] | WALDMANN T, WOHLFAHRT-MEHRENS M. Effects of rest time after Li plating on safety behavior-ARC tests with commercial high-energy 18650 Li-ion cells[J]. Electrochimica Acta, 2017, 230: 454-460. DOI: 10.1016/j.electacta.2017.02.036. |
[77] | ZHOU H W, FEAR C, CARTER R E, et al. Correlating lithium plating quantification with thermal safety characteristics of lithium-ion batteries[J]. Energy Storage Materials, 2024, 66: 103214. DOI: 10.1016/j.ensm.2024.103214. |
[1] | Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674. |
[2] | Wei WANG, Huishi LIANG, Miangang LI, Kui ZHOU, Wei WANG, Ziyao WANG, Zinan SHI. Method for monitoring irreversible lithium plating in lithium batteries using transfer learning [J]. Energy Storage Science and Technology, 2025, 14(7): 2698-2706. |
[3] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
[4] | Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832. |
[5] | Jiahui LIU, Weixiang BIAN, Dawei LI. In situ measurement and analysis of the electromechanical coupling performance of composite graphite electrodes in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2240-2247. |
[6] | Chunling WU, Liding WANG, Yong LU, Limin GENG, Hao CHEN, Jinhao MENG. Lithium-ion batteries SOH estimation based on gaussian processed regression optimized by egret swarm optimization [J]. Energy Storage Science and Technology, 2025, 14(6): 2498-2511. |
[7] | Gongrui WANG, Anping ZHANG, Xuanxuan REN, Mingzhe YANG, Yuning HAN, Zhongshuai WU. High-voltage lithium cobalt oxide cathode: Key challenges, modification strategies and future prospectives [J]. Energy Storage Science and Technology, 2025, 14(6): 2278-2319. |
[8] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[9] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[10] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[11] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[12] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[13] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[14] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[15] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||