Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2752-2760.doi: 10.19799/j.cnki.2095-4239.2025.0097
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Feng XIONG1(), Depeng KONG1(
), Ping PING2, Yue ZHANG1, Xiantong REN1, Yao LV1
Received:
2025-01-27
Revised:
2025-03-04
Online:
2025-07-28
Published:
2025-07-11
Contact:
Depeng KONG
E-mail:upcxiongfeng@163.com;kongdepeng@upc.edu.cn
CLC Number:
Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760.
[1] | 徐国栋, 王坚嵘, 石一峰, 等. 电池储能电站安全问题分析与对策[J]. 电力安全技术, 2020, 22(9): 60-63. |
XU G D, WANG J R, SHI Y F, et al. Analysis and countermeasures for safety problems of battery energy storage power stations[J]. Electric Safety Technology, 2020, 22(9): 60-63. | |
[2] | 储旺. 韩国风电场储能电站起火爆炸[J]. 电力设备管理, 2018(8): 97-98. |
CHU W. Korean wind farm energy storage power station fire explosion[J]. Electric Power Equipment Management, 2018(8): 97-98. | |
[3] | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. DOI: 10.1016/j.jpowsour.2012.02.038. |
[4] | 陈吉清, 刘蒙蒙, 兰凤崇. 三元动力电池及其成组后的过充安全性试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1072-1080. DOI: 10. 13229/j.cnki.jdxbgxb20180159. |
CHEN J Q, LIU M M, LAN F C. Experiment on overcharge safety of NCM battery and battery pack[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1072-1080. DOI: 10.13229/j.cnki.jdxbgxb20180159. | |
[5] | WANG K, WU D J, CHANG C Y, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. DOI: 10.1016/j.jclepro.2023.139992. |
[6] | HUANG Z H, YU Y, DUAN Q L, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778. DOI: 10.1016/j.apenergy.2022.119778. |
[7] | WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730. DOI: 10.1016/j.jhazmat.2019.06.007. |
[8] | 孙旭东. 车用锂离子动力电池热-电滥用下热失控特性研究[D]. 镇江: 江苏大学, 2020. DOI: 10.27170/d.cnki.gjsuu.2020.000909. |
SUN X D. Research on thermal runaway characteristics of vehicle lithium-ion power battery under thermal-electrical abuse[D]. Zhenjiang: Jiangsu University, 2020. DOI: 10.27170/d.cnki.gjsuu.2020.000909. | |
[9] | 许金龙, 沈佳妮, 王乾坤, 等. 基于锂离子电池热失控模型的电热耦合滥用条件分析[J]. 储能科学与技术, 2021, 10(4): 1344-1352. DOI: 10.19799/j.cnki.2095-4239.2021.0064. |
XU J L, SHEN J N, WANG Q K, et al. Analysis of electrothermal coupling abuse condition based on thermal runaway model of lithium-ion battery[J]. Energy Storage Science and Technology, 2021, 10(4): 1344-1352. DOI: 10.19799/j.cnki.2095-4239.2021.0064. | |
[10] | ZHAO C P, WANG T H, HUANG Z, et al. Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test[J]. Journal of Energy Storage, 2021, 38: 102519. DOI: 10.1016/j.est.2021.102519. |
[11] | HU J, LIU T, WANG X S, et al. Investigation on thermal runaway of 18, 650 lithium ion battery under thermal abuse coupled with charging[J]. Journal of Energy Storage, 2022, 51: 104482. DOI: 10.1016/j.est.2022.104482. |
[12] | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
[13] | HE X F, DU J H, YANG S Z, et al. Research on overcharge thermal runaway behavior analysis and early warning algorithm of ternary lithium battery pack[J]. Journal of Applied Electrochemistry, 2025, 55(2): 273-288. DOI: 10.1007/s10800-024-02184-y. |
[14] | KANG R X, JIA C X, ZHAO J L, et al. Effects of capacity on the thermal runaway and gas venting behaviors of large-format lithium iron phosphate batteries induced by overcharge[J]. Journal of Energy Storage, 2024, 87: 111523. DOI: 10.1016/j.est.2024.111523. |
[15] | WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI: 10.1016/j.jechem.2020.07.028. |
[16] | LI H, CHEN H D, ZHONG G B, et al. Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 122-129. DOI: 10.1016/j.jlp.2019.06.012. |
[17] | ZHU M H, ZHANG S Y, CHEN Y, et al. Experimental and analytical investigation on the thermal runaway propagation characteristics of lithium-ion battery module with NCM pouch cells under various state of charge and spacing[J]. Journal of Energy Storage, 2023, 72: 108380. DOI: 10.1016/j.est.2023.108380. |
[18] | HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: 121885. DOI: 10.1016/j.energy.2021.121885. |
[19] | ZHOU Z Z, ZHOU X D, PENG Y, et al. Quantitative study on the thermal failure features of lithium iron phosphate batteries under varied heating powers[J]. Applied Thermal Engineering, 2021, 185: 116346. DOI: 10.1016/j.applthermaleng.2020.116346. |
[1] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
[2] | Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832. |
[3] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[4] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[5] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
[6] | Wenqiang FAN, Zinan SHI, Daiming YANG, Huishi LIANG, Ye CHEN. Experimental study on the suppression effect of different coolants on battery thermal runaway [J]. Energy Storage Science and Technology, 2025, 14(4): 1554-1563. |
[7] | Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. |
[8] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[9] | Pengjie ZHU, Wei LI, Chu ZHANG, Hao SONG, Beibei LI, Xiumei LIU, Lili LIU. Study on early warning system for thermal runaway of lithium batteries in energy storage cabinets due to smoke and gas diffusion [J]. Energy Storage Science and Technology, 2025, 14(2): 624-635. |
[10] | Jinhao YE, Junhui HOU, Zhengguo ZHANG, Ziye LING, Xiaoming FANG, Silin HUANG, Zhiwen XIAO. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell [J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. |
[11] | Huaiyu HUANG, Silin HUANG, Rongchao ZHAO, Zhiwen XIAO, Junhui HOU, Liwei YAN. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. |
[12] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[13] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[14] | Ying LIU, Bingxiang SUN, Xinze ZHAO, Junwei ZHANG. Joint estimation of SOC/SOP for lithium-ion batteries across a wide temperature range using an electro-thermal coupling model [J]. Energy Storage Science and Technology, 2024, 13(9): 3030-3041. |
[15] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||