Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1748-1757.doi: 10.19799/j.cnki.2095-4239.2024.1085
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yu LI1(), Dandan LI2, Fei XIE1(
), bin TANG2, Xiaohui RONG1, Qinqin LIANG2, Yongsheng HU1(
)
Received:
2024-11-19
Revised:
2024-11-25
Online:
2025-05-28
Published:
2025-05-21
Contact:
Fei XIE, Yongsheng HU
E-mail:3510709270@qq.com;fxie@iphy.ac.cn;yshu@iphy.ac.cn
CLC Number:
Yu LI, Dandan LI, Fei XIE, bin TANG, Xiaohui RONG, Qinqin LIANG, Yongsheng HU. Recent progress of cathode presodiation strategies in sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1748-1757.
Fig. 3
(a) Effect of different conductive additives on electrochemical oxidation potential of Na2C2O4; (b) Relationship between oxidation potential and specific surface area of conductive additives[21]; (c) Voltage -specific capacity profile for (Na2O + NiO) composite cathode and the pure Na2O cathode; (d) The density of states (DOS) of Na2O (top) and NiO-Na2O (bottom)[35]"
1 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741. |
2 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. DOI: 10.1021/cr100290v. |
3 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a. |
4 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438. |
5 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302. DOI: 10.1021/cr 020731c. |
6 | HU Y S, LI Y Q. Unlocking sustainable Na-ion batteries into industry[J]. ACS Energy Letters, 2021, 6(11): 4115-4117. DOI: 10.1021/acsenergylett.1c02292. |
7 | XIE F, LU Y X, CHEN L Q, et al. Recent progress in presodiation technique for high-performance Na-ion batteries[J]. Chinese Physics Letters, 2021, 38(11): 118401. DOI: 10.1088/0256-307X/38/11/118401. |
8 | LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): 1903795. DOI: 10.1002/adfm. 2019 03795. |
9 | LIU M C, ZHANG J Y, GUO S H, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17620-17627. DOI: 10.1021/acsami. 0c02230. |
10 | WANG H B, XIAO Y Z, SUN C, et al. A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode[J]. RSC Advances, 2015, 5(129): 106519-106522. DOI: 10.1039/C5RA21235A. |
11 | PI Y Q, GAN Z W, YAN M Y, et al. Insight into pre-sodiation in Na3V2(PO4)2F3/C @ hard carbon full cells for promoting the development of sodium-ion battery[J]. Chemical Engineering Journal, 2021, 413: 127565. DOI: 10.1016/j.cej.2020.127565. |
12 | MOEEZ I, JUNG H G, LIM H D, et al. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-41401. DOI: 10.1021/acsami.9b14381. |
13 | ZHANG B, DUGAS R, ROUSSE G, et al. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries[J]. Nature Communications, 2016, 7: 10308. DOI: 10.1038/ncomms10308. |
14 | MARTINEZ DE ILARDUYA J, OTAEGUI L, LÓPEZ DEL AMO J M, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67 [Fe0.5Mn0.5] O2 cathode for sodium-ion battery[J]. Journal of Power Sources, 2017, 337: 197-203. DOI: 10.1016/j.jpowsour.2016.10.084. |
15 | ZHANG Q, GAO X W, SHI Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan[J]. Energy Storage Materials, 2021, 39: 54-59. DOI: 10.1016/j.ensm.2021.04.011. |
16 | SATHIYA M, THOMAS J, BATUK D, et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes[J]. Chemistry of Materials, 2017, 29(14): 5948-5956. DOI: 10.1021/acs.chemmater.7b01542. |
17 | SHEN B L, ZHAN R M, DAI C L, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J]. Journal of Colloid and Interface Science, 2019, 553: 524-529. DOI: 10.1016/j.jcis.2019.06.056. |
18 | PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. DOI: 10.1021/acs.chemmater.5b02684. |
19 | SHANMUKARAJ D, KRETSCHMER K, SAHU T, et al. Highly efficient, cost effective, and safe sodiation agent for high-performance sodium-ion batteries[J]. ChemSusChem, 2018, 11(18): 3286-3291. DOI: 10.1002/cssc.201801099. |
20 | PAN X X, CHOJNACKA A, BÉGUIN F. Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems[J]. Energy Storage Materials, 2021, 40: 22-30. DOI: 10.1016/j.ensm.2021.04.048. |
21 | NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): 2001419. DOI: 10.1002/adma. 202001419. |
22 | YANG Y, WANG Z F, DU C C, et al. Decoupling the air sensitivity of Na-layered oxides[J]. Science, 2024, 385(6710): 744-752. DOI: 10.1126/science.adm9223. |
23 | 聂阳. 一种负极补钠添加剂、负极材料及钠离子电池: CN110707308B[P]. 2022.09.16. |
24 | 徐凯琪, 门双, 钟国彬, 等. 一种钠离子电池负极补钠添加剂、钠离子电池负极极片和钠离子电池: CN110690437B[P]. 2021-04-23. |
XU K Q, MEN S, ZHONG G B, et al. Sodium-ion battery anode sodium supplement additive, sodium-ion battery anode pole piece and sodium-ion battery: CN110690437B[P]. 2021-04-23. | |
25 | 乔齐齐, 王鹏飞, 施泽涛, 等. 一种补锂或补钠的添加剂及其制备方法和应用: CN116454281A[P]. 2023-07-18. |
QIAO Q Q, WANG P F, SHI Z T, et al. Additive for supplementing lithium or sodium as well as preparation method and application of additive: CN116454281A[P]. 2023-07-18. | |
26 | 张帅帅, 谢芳, 王卫江, 等. 一种补锂或补钠材料的制备方法及其所得产品和应用: CN116344819A[P]. 2023-06-27. |
ZHANG S S, XIE F, WANG W J, et al. Preparation method of lithium or sodium supplementing material, product obtained by preparation method and application of product: CN116344819A[P]. 2023-06-27. | |
27 | 杨雪, 谢芳, 张帅帅. 正极补钠添加剂及其制备方法和应用: CN116111072A[P]. 2023-05-12. |
YANG X, XIE F, ZHANG S S. Positive electrode sodium supplement additive and preparation method and application thereof: CN116111072A[P]. 2023-05-12. | |
28 | 李魁, 曾伟雄, 李尚. 一种纳米草酸钠复合的正极活性材料及其应用: CN115954445B [P/OL]. |
LI K, ZENG W X, LI S. A nano-sodium oxalate-composited positive electrode active material and its application: CN115954445B [P/OL]. | |
29 | ZHANG T, KONG J, SHEN C, et al. Converting residual alkali into sodium compensation additive for high-energy Na-ion batteries[J]. ACS Energy Letters, 2023, 8(11): 4753-4761. DOI: 10.1021/acsenergylett.3c02075. |
30 | 王海燕, 张睿, 唐有根, 等. 一种钠离子电池正极补钠添加剂、补钠方法、正极、柔性电极: CN114566650A[P]. 2022-05-31. |
WANG H Y, ZHANG R, TANG Y G, et al. Sodium ion battery positive electrode sodium supplementing additive, sodium supplementing method, positive electrode and flexible electrode: CN114566650A[P]. 2022-05-31. | |
31 | 董少海, 肖厚文, 米源, 等. 一种提升钠离子电池首次库伦效率和能量密度的方法、正极浆料、正极片和钠离子电池: CN116646460A[P]. 2023-08-25. |
DONG S H, XIAO H W, MI Y, et al. Method for improving first coulombic efficiency and energy density of sodium ion battery, positive electrode slurry, positive electrode plate and sodium ion battery: CN116646460A[P]. 2023-08-25. | |
32 | 周勇, 尚佩, 吴志荣, 等. 一种钠离子电池正极片及其制备方法及钠离子电池: CN116190570A[P]. 2023-05-30. |
ZHOU Y, SHANG P, WU Z R, et al. Sodium-ion battery positive plate, preparation method thereof and sodium-ion battery: CN116190570A[P]. 2023-05-30. | |
33 | 刘静, 等. 一种钠离子电池正极浆料、正极极片、电池、制备方法: CN115663179A[P]. 2023-01-31. |
LIU J, et al. Sodium-ion battery positive electrode slurry, positive electrode plate, battery and preparation method: CN115663179A[P]. 2023-01-31. | |
34 | 张国栋, 王巍, 文佳琪. 复合补钠材料及制备方法、正极极片、钠电池、用电设备: CN116826060B [P/OL]. |
ZHANG G D, WANG W, WEN J Q. Composite sodium-supplementing materials and their preparation method, positive electrode plates, sodium batteries and electrical equipment: CN116826060B [P/OL]. | |
35 | CHEN Y L, ZHU Y L, SUN Z F, et al. Achieving high-capacity cathode presodiation agent via triggering anionic oxidation activity in sodium oxide[J]. Advanced Materials, 2024, 36(36): 2407720. DOI: 10.1002/adma.202407720. |
36 | 杨行, 张庆, 戚兴国, 等. 一种预钠化正极极片及其应用以及一种钠离子电池及其制备方法: CN114649504A[P]. 2022-06-21. |
YANG X, ZHANG Q, QI X G, et al. Pre-sodium-modified positive pole piece, application of pre-sodium-modified positive pole piece, sodium-ion battery and preparation method of sodium-ion battery: CN114649504A[P]. 2022-06-21. | |
37 | 李静如, 王世冠, 赵子萌, 等. 补钠材料及其制备方法、正极极片、电极组件、电池和用电装置: CN116632220A[P]. 2023-08-22. |
LI J R, WANG S G, ZHAO Z M, et al. Sodium supplementing material and preparation method thereof, positive pole piece, electrode assembly, battery and electric device: CN116632220A[P]. 2023-08-22. | |
38 | 文佳琪, 黄汉川, 王巍. 补钠组合物、正极极片及其制备方法、钠离子电池: CN116706075A[P]. 2023-09-05. |
WEN J Q, HUANG H C, WANG W. Sodium supplementing composition, positive pole piece, preparation method of positive pole piece and sodium ion battery: CN116706075A[P]. 2023-09-05. | |
39 | CAO M Y, XU L, GUO Y J, et al. Air-stable Na3.5C6O6 as a sodium compensation additive in cathode of Na-ion batteries[J]. Small, 2024, 20(42): 2400498. DOI: 10.1002/smll.202400498. |
40 | LIU X X, TAN Y C, WANG W Y, et al. Ultrafine sodium sulfide clusters confined in carbon nano-polyhedrons as high-efficiency presodiation reagents for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27057-27065. DOI: 10.1021/acsami.1c05144. |
41 | GUO Y J, NIU Y B, WEI Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2772-2778. DOI: 10.1021/acsami.0c20870. |
42 | 聂阳, 孔权, 徐雄文. 一种补钠组合物及钠离子电池: CN115117558A[P]. 2022-09-27. |
NIE Y, KONG Q, XU X W. Sodium supplementing composition and sodium ion battery: CN115117558A[P]. 2022-09-27. | |
43 | ZHANG Y Y, ZHANG C H, GUO Y J, et al. Refined electrolyte and interfacial chemistry toward realization of high-energy anode-free rechargeable sodium batteries[J]. Journal of the American Chemical Society, 2023, 145(47): 25643-25652. DOI: 10.1021/jacs.3c07804. |
44 | 江卫军, 周世波, 郝雷明, 等. 一种钠离子电池及其制备方法: CN114583174B [P/OL]. |
JIANG W J, ZHOU S B, HAO L M, et al. A sodium-ion battery and its preparation method: CN114583174B [P/OL]. |
[1] | Yangfeng WANG, Jiaao HOU, Zichen ZHU, Cong SUO, Shuandi HOU. Research progress on hard-carbon closed-pore structure of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 555-569. |
[2] | Yonggang CHANG, Jinhao ZHANG, Wei XIE, Xiuchun LI, Yilin WANG, Chengmeng CHEN. Capacity enhancement strategy of hard carbon anode for sodium-ion battery: A review [J]. Energy Storage Science and Technology, 2025, 14(2): 544-554. |
[3] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[4] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[5] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[6] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[7] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[8] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[9] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[10] | Ruirui ZHAO, Yanqiu PENG, Xuejun LAI, Zhilong WU, Jie GAO, Wencheng XU, Lina WANG, Qin DING, Yongjin FANG, Yuliang CAO. Capacity fading mechanism of Na4Fe3(PO4)2P2O7 based sodium-ion battery during calendar aging [J]. Energy Storage Science and Technology, 2024, 13(11): 4124-4132. |
[11] | Haoran CAI, Lijue YAN, Xu YANG, Huilin PAN. Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2707-2714. |
[12] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[13] | Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances [J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. |
[14] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[15] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||