Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1727-1747.doi: 10.19799/j.cnki.2095-4239.2025.0383
Previous Articles Next Articles
Qiangfu SUN1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2(
)
Received:
2025-04-23
Online:
2025-05-28
Published:
2025-05-21
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025)[J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747.
1 | LI A F, HU C Z, WANG G X, et al. W/Mg dual-site doping triggering high Ni migration barrier and rock-salt passivation layer for long-cycle and thermal stable ultrahigh-nickel cathode material LiNi0.9Co0.1O2[J]. Journal of Power Sources, 2025, 635: 236506. DOI: 10.1016/j.jpowsour.2025.236506. |
2 | ZOU Y, TANG Y L, ZHENG Q Z, et al. Enabling the strengthened structural and interfacial stability of high-nickel LiNi0.9Co0.05Mn0.05O2 cathode by a coating-doping-microstructure regulation three-In-one strategy[J]. Advanced Functional Materials, 2024, 34(41): 2406068. DOI: 10.1002/adfm.202406068. |
3 | LI J Y, LI Z W, ZHANG X G, et al. A precursor-structural regulation strategy enables long-cycling and fast-charging ultra-high nickel layered cathode materials[J]. Materials Today Chemistry, 2025, 44: 102606. DOI: 10.1016/j.mtchem.2025.102606. |
4 | XIAO Z, CHEN A Q, MA R J, et al. Tungsten doping reinforced structural stability of single-crystal nickel-rich LiNi0.9Co0.1O2 cathodes[J]. Journal of Materials Chemistry A, 2025, 13(10): 7228-7236. DOI: 10.1039/D4TA07391F. |
5 | SUN H B, YANG Z J, GHOSH R, et al. Thermal processing to modulate surface chemistry and bulk charge distribution in nickel-rich layered lithium positive electrodes[J]. Nature Communications, 2025, 16: 1478. DOI: 10.1038/s41467-025-56075-7. |
6 | ZHANG H J, QIN L, HUANG X, et al. Perovskite-coated small-size single-crystalline W-doped Ni-rich cathodes with greatly enhanced power density for Li-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(36): 24542-24548. DOI: 10.1039/D4TA04197F. |
7 | KWON Y M, KIM C S, KIM K, et al. High-volumetric-energy-density cathode material from single-sized precursor via precise additive control[J]. Journal of Industrial and Engineering Chemistry, 2025, 145: 410-418. DOI: 10.1016/j.jiec.2024.10.036. |
8 | LI H, LIU H, LUO S R, et al. Tuning Li occupancy and local structures for advanced co-free Ni-rich positive electrodes[J]. Nature Communications, 2025, 16: 2203. DOI: 10.1038/s41467-025-57063-7. |
9 | WANG Y, MENG D C, et al. Breaking the cycle of heterogeneous degradation: Surface-targeted protection for Ni-rich cathodes in practical high-energy batteries[J]. ACS Energy Letters, 2025, 10(3): 1457-1465. DOI: 10.1021/acsenergylett.4c03556. |
10 | WANG Q, ZHANG Y M, YAO M, et al. A lithium-selective "OR-gate" enables fast-kinetics and ultra-stable Li-rich cathodes for polymer-based solid-state batteries[J]. Energy & Environmental Science, 2025, 18(6): 2931-2939. DOI: 10.1039/D4EE05264A. |
11 | NISAR U, REICHEL B, MUNDSZINGER M, et al. Tailoring co-free LiNi0.5Mn1.5O4 material for high-voltage lithium-ion batteries: Particle design & grain boundary engineering[J]. Advanced Energy Materials, 2024, 14(43): 2403024. DOI: 10.1002/aenm. 202403024. |
12 | KANG B, PARK J, KIM B, et al. Elucidating lithium-ion diffusion kinetics in cation-disordered rocksalt cathodes[J]. Energy & Environmental Science, 2025, 18(5): 2330-2341. DOI: 10.1039/D4EE04580G. |
13 | MEI Y, LI Y J, WANG H J, et al. Tetrahedral lithium stuffing in disordered rocksalt cathodes for high-power-density and energy-density batteries[J]. Journal of the American Chemical Society, 2025, 147(5): 4438-4449. DOI: 10.1021/jacs.4c15631. |
14 | WANG X X, YU A Y, JIANG T, et al. Accelerating Li-ion diffusion in LiFePO4 by polyanion lattice engineering[J]. Advanced Materials, 2024, 36(47): 2410482. DOI: 10.1002/adma.202410482. |
15 | HUANG Y H, LIU Y X, LIU W, et al. Reversible energy storage based on LiF-I- reaction using spent CFx cathode[J]. Journal of Power Sources, 2025, 638: 236599. DOI: 10.1016/j.jpowsour. 2025.236599. |
16 | OUYANG B, HUANG D, BIAN X H, et al. In situ electropolymerization of 2, 7-di(thienyl)pyrene-4, 5, 9, 10-tetraone for superior lithium-ion battery cathodes[J]. Chemical Engineering Journal, 2025, 508: 161004. DOI: 10.1016/j.cej. 2025.161004. |
17 | LIU L B, GUO H Y, YU Y X, et al. An esterified cross-linked polymer binder for high-rate stabilised silicon anodes in lithium-ion batteries[J]. Electrochimica Acta, 2025, 519: 145824. DOI: 10. 1016/j.electacta.2025.145824. |
18 | YAN W G, MA S Y, SU Y F, et al. "Shooting three birds with one stone": Bi-conductive and robust binder enabling low-cost micro-silicon anodes for high-rate and long-cycling operation[J]. Energy Storage Materials, 2025, 76: 104140. DOI: 10.1016/j.ensm. 2025.104140. |
19 | HUH S H, KIM S H, BAE J S, et al. Understanding the impact of stripping behavior on subsequent lithium metal growth for achieving homogeneity[J]. Energy & Environmental Materials, 2025, DOI: 10.1002/eem2.70003. |
20 | CHENG L, LIU J C, WANG Y C, et al. Lithiophilic-gradient, Li+ supplementary interphase design for lean lithium metal batteries[J]. Advanced Materials, 2025, 37(14): 2420255. DOI: 10.1002/adma.202420255. |
21 | YANG Y Z, LI Z L, ZHANG M, et al. Electrolyte chemistry modulation toward high-performance and ultralow-temperature silicon anode[J]. Advanced Materials, 2025, 37(15): 2417981. DOI: 10.1002/adma.202417981. |
22 | HUANG C H, YANG X L, GONG S Q, et al. Hierarchical-structured RGO@EGaIn composites as advanced self-healing anode for room-temperature liquid metal battery[J]. Advanced Materials, 2025, 37(14): 2419060. DOI: 10.1002/adma.202419060. |
23 | WANG D W, LIU C, WANG R Y, et al. Electronic localization enables long-cycling sulfides-based all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202501411. |
24 | LUO M, WANG J Y, WANG L Z, et al. Li6PS5Cl/MoS2 hybrid electrolyte integrates high sulfur conversion kinetics with stable lithium metal interfaces in all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2025, 135: 110628. DOI: 10.1016/j.nanoen.2024. 110628. |
25 | SHEN K E, SHI W Z, SONG H M, et al. Solid catholyte with regulated interphase redox for all-solid-state lithium-sulfur batteries[J]. Advanced Materials, 2025, 37(11): 2417171. DOI: 10.1002/adma.202417171. |
26 | SONG H M, MÜNCH K, LIU X, et al. All-solid-state Li-S batteries with fast solid-solid sulfur reaction[J]. Nature, 2025, 637(8047): 846-853. DOI: 10.1038/s41586-024-08298-9. |
27 | WANG G Z, ZHANG S M, WU H, et al. Oxychloride polyanion clustered solid-state electrolytes via hydrate-assisted synthesis for all-solid-state batteries[J]. Advanced Materials, 2025, 37(4): 2410402. DOI: 10.1002/adma.202410402. |
28 | ZHANG G X, LIU Z T, MA Y F, et al. Li2.9Fe0.9Zr0.1Cl6 as redox-active catholyte for solid-state Li-ion batteries[J]. Chemistry of Materials, 2024, 36(20): 10104-10112. DOI: 10.1021/acs.chemmater. 4c01385. |
29 | SUN F T, GAO Z S, YANG Y, et al. Li-Fe-Cl families as novel solid electrolytes for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2024. DOI: 10.1021/acsami.4c09878. |
30 | LI W H, LI M S, WANG S, et al. Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nature Nanotechnology, 2024, 20(2): 265-275. DOI: 10.1038/s41565-024-01813-z. |
31 | PEI F, HUANG Y M, WU L, et al. Multisite crosslinked poly(ether-urethane)-based polymer electrolytes for high-voltage solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(49): 2409269. DOI: 10.1002/adma.202409269. |
32 | YE G, HONG X F, HE M X, et al. All-solid-state lithium metal batteries with microdomain-regulated polycationic solid electrolytes[J]. Advanced Materials, 2025, 37(12): 2417829. DOI: 10.1002/adma.202417829. |
33 | LIU S H, TIAN W S, SHEN J Q, et al. Bioinspired gel polymer electrolyte for wide temperature lithium metal battery[J]. Nature Communications, 2025, 16: 2474. DOI: 10.1038/s41467-025-57856-w. |
34 | HE Y B, WANG C Y, ZHANG R, et al. A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries[J]. Nature Communications, 2024, 15: 10015. DOI: 10.1038/s41467-024-53869-z. |
35 | PANG X, SHI B B, LIU Y W, et al. Phosphorylated covalent organic framework membranes toward ultrafast single lithium-ion transport[J]. Advanced Materials, 2024, 36(52): 2413022. DOI: 10.1002/adma.202413022. |
36 | ZHANG F M, ZHANG P, ZHANG W H, et al. Five volts lithium batteries with advanced carbonate-based electrolytes: A rational design via a trio-functional addon materials[J]. Advanced Materials, 2024, 36(44): 2410277. DOI: 10.1002/adma.202410277. |
37 | WEI A J, YANG Y Q, MU J P, et al. Enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 batteries with a multifunctional inorganic MgHPO4 electrolyte additive[J]. Scientific Reports, 2025, 15: 6186. DOI: 10.1038/s41598-025-90702-z. |
38 | XIAO Z X, WU S Y, REN X Z, et al. Superior high-rate Ni-rich lithium batteries based on fast ion-desolvation and stable solid-electrolyte interphase[J]. Advanced Science, 2025, 12(12): 2413419. DOI: 10.1002/advs.202413419. |
39 | WANG Z M, HE Z Y, WANG Z S, et al. Engineering the solid electrolyte interphase for enhancing high-rate cycling and temperature adaptability of lithium-ion batteries[J]. Chemical Science, 2025, 16(8): 3571-3579. DOI: 10.1039/D4SC07916G. |
40 | XU Z X, ZHANG X Y, YANG J, et al. High-voltage and intrinsically safe electrolytes for Li metal batteries[J]. Nature Communications, 2024, 15: 9856. DOI: 10.1038/s41467-024-51958-7. |
41 | ZHANG N, LI A M, ZHANG W R, et al. 4.6 V moisture-tolerant electrolytes for lithium-ion batteries[J]. Advanced Materials, 2024, 36(50): 2408039. DOI: 10.1002/adma.202408039. |
42 | LIU L X, LI X Q, et al. Highly improved cyclic stability of high voltage LiNi0.6Co0.2Mn0.2O2/graphite pouch cells via a silicon-based electrolyte additive[J]. ACS Applied Materials & Interfaces, 2025, 17(8): 12105-12116. DOI: 10.1021/acsami.4c20055. |
43 | WU X T, FENG J W, AMZIL S, et al. A functional slurry additive for robust interphase and stabilized high-voltage nickel-rich cathodes in lithium-ion batteries[J]. Chemical Engineering Journal, 2025, 509: 161446. DOI: 10.1016/j.cej.2025.161446. |
44 | PENG Y, CHEN J W, LIU G P, et al. Highly adaptable electrode-electrolyte interphases constructed by dual-additive-optimized electrolyte for 4.5 V lithium metal batteries[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm. 202501489. |
45 | ZHANG A P, BI Z H, YANG E D, et al. Formulating electrophilic electrolyte for in situ stabilization of 4.8 V Li-rich batteries with 100% initial coulombic efficiency[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202502603. |
46 | XU Q S, LI T, JU Z J, et al. Li2ZrF6-based electrolytes for durable lithium metal batteries[J]. Nature, 2025, 637(8045): 339-346. DOI: 10.1038/s41586-024-08294-z. |
47 | MIN X Q, WANG L, SHEN M, et al. A multifunctional additive extending the calendar life of Ni-rich cathode-based lithium-ion batteries for electric vehicles[J]. Materials Today, 2025, 83: 157-165. DOI: 10.1016/j.mattod.2024.12.021. |
48 | SU C C, HE M N, DATO M A, et al. Constructing synthetic organosulfur additive for high voltage lithium-ion batteries[J]. Nano Energy, 2025, 137: 110807. DOI: 10.1016/j.nanoen.2025.110807. |
49 | WANG Y W, LIU J, JI H Q, et al. Optimizing Si─O conjugation to enhance interfacial kinetics for low-temperature rechargeable lithium-ion batteries[J]. Advanced Materials, 2025, 37(3): 2412155. DOI: 10.1002/adma.202412155. |
50 | SANG X Y, HU K J, CHEN J X, et al. Temperature-inert weakly solvating electrolytes for low-temperature lithium-ion batteries with micro-sized silicon anodes[J]. Angewandte Chemie International Edition, 2025, 64(17): e202500367. DOI: 10.1002/anie.202500367. |
51 | YU Q, SUN W, WANG S, et al. Smart electrolytes for lithium batteries with reversible thermal protection at high temperatures[J]. Batteries & Supercaps, 2024, 7(12): e202400339. DOI: 10. 1002/batt.202400339. |
52 | LU Y, CAO Q B, ZHANG W L, et al. Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions[J]. Nature Energy, 2024, 10(2): 191-204. DOI: 10.1038/s41560-024-01679-4. |
53 | LUO X, WU H Y, CHEN C, et al. Synthesis of trisiloxane with the dioxaborolane group as a cathode film-forming electrolyte additive for high-temperature LiMn2O4/Li4Ti5O12 batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(46): 63681-63691. DOI: 10.1021/acsami.4c16126. |
54 | GUO X Y, XU S T, GU R, et al. Breaking aggregation state to achieve low-temperature fast charging of lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(11): e202414613. DOI: 10.1002/anie.202414613. |
55 | DEGUCHI M, TODOROV Y M, ABE K. Functional electrolyte: Design of corrosion inhibition additives to protect Cu current collectors in over-discharged state[J]. Journal of Power Sources, 2025, 625: 235613. DOI: 10.1016/j.jpowsour.2024.235613. |
56 | FAN X Z, LIU M, ZHANG J H, et al. Dielectric increment of electrolytes mediated by ion association for lithium-sulfur batteries[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202425240. |
57 | JIANG S, LI R H, CHEN L, et al. Deciphering the purification additive chemistries for ultra-stable high-voltage lithium-ion batteries[J]. Advanced Materials, 2025, 37(15): 2417285. DOI: 10.1002/adma.202417285. |
58 | YUAN H Y, LIN W J, CHEN S J, et al. Unlocking sulfide solid-state battery longevity by the paradigm of dual-functional plastic crystal[J]. ACS Nano, 2025, 19(2): 2570-2580. DOI: 10.1021/acsnano.4c14288. |
59 | YIN X J, UNIVERSITY T, et al. Beyond polymerization: in situ coupled fluorination enables more stable interfaces for solid-state lithium batteries[J]. Journal of the American Chemical Society, 2025, 147(5): 4393-4402. DOI: 10.1021/jacs.4c15079. |
60 | FUJITA Y, UNIVERSITY O M, DING J, et al. Electrode/electrolyte interphase formation by lithium iodide in a Li2S-based positive electrode for all-solid-state batteries[J]. ACS Applied Energy Materials, 2025, 8(4): 2192-2199. DOI: 10.1021/acsaem.4c02731. |
61 | ZHOU X, JIANG M, DUAN Y H, et al. Multi-electron transfer halide cathode materials based on intercalation-conversion reaction towards all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, 64(4): e202416635. DOI: 10.1002/anie.202416635. |
62 | LIU Z T, ZHANG G X, PEPAS J, et al. Li2FeCl4 as a cost-effective and durable cathode for solid-state Li-ion batteries[J]. ACS Energy Letters, 2024, 9(11): 5464-5470. DOI: 10.1021/acsenergylett. 4c02376. |
63 | SU H, HU Y, WANG M K, et al. Localized electrolyte grain engineering to suppress Li intrusion in all-solid-state batteries[J]. Advanced Materials, 2025, 37(15): 2500673. DOI: 10.1002/adma.202500673. |
64 | LI J W, LI Y Y, LIU T, et al. Self-limiting reaction of solid electrolyte empowering ultralong lifespan all-solid-state lithium metal batteries with Li6PS5Cl-based electrolyte membrane[J]. Advanced Functional Materials, 2025,DOI: 10.1002/adfm.202504546. |
65 | LEE Y H, KIM D H, YOON J M, et al. Empowering all-solid-state Li-ion batteries with self-stabilizing Sn-based anodes[J]. Joule, 2024, 8(10): 2777-2793. DOI: 10.1016/j.joule.2024.08.011. |
66 | ZHANG Z Y, ZHANG X L, LIU Y, et al. Silicon-based all-solid-state batteries operating free from external pressure[J]. Nature Communications, 2025, 16: 1013. DOI: 10.1038/s41467-025-56366-z. |
67 | LIN Z J, YAO Q S, YANG S J, et al. Highly safe all-solid-state lithium metal battery enabled by interface thermal runaway regulation between lithium metal and solid-state electrolyte[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202424110. |
68 | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel electrolyte[J]. Nature, 2024, 629(8010): 86-91. DOI: 10.1038/s41586-024-07343-x. |
69 | GU J H, LI Z Y, HONG B, et al. Engineering electrolytes with transition metal ions for the rapid sulfur redox and in situ solidification of polysulfides in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(45): 61934-61945. DOI: 10.1021/acsami.4c11693. |
70 | ZHANG L C, WANG T S, CHEN J J, et al. An artificial cathode-electrolyte interphase enabling one-step sulfur transition in polyethylene oxide-based solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2024, 12(37): 25407-25415. DOI: 10.1039/D4TA02413C. |
71 | CAO Y, GENG C N, BAI C, et al. Integrating solid interfaces for catalysis in all-solid-state lithium-sulfur batteries[J]. Energy & Environmental Science, 2025, 18(8): 3795-3806. DOI: 10.1039/D4EE05845C. |
72 | WU Z, LIU M L, HE W F, et al. Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries[J]. Nature Communications, 2024, 15: 9535. DOI: 10. 1038/s41467-024-53797-y. |
73 | ZHOU F, GONG Z Q, WANG R H, et al. Band structure and spin-state-induced electronic configuration regulation for efficient sulfur redox reaction[J]. Advanced Functional Materials, 2025, 35(12): 2417730. DOI: 10.1002/adfm.202417730. |
74 | PLATEAU T P, BOYER G, PARK J. Hyper-thick electrodes for lithium-ion batteries enabled by micro-electric-field process[J]. Advanced Science, 2025, 12(7): 2413444. DOI: 10.1002/advs. 202413444. |
75 | YANG Y H, LI Z F, YANG Z L, et al. Ultrafast lithium-ion transport engineered by nanoconfinement effect[J]. Advanced Materials, 2025, 37(8): 2416266. DOI: 10.1002/adma.202416266. |
76 | MISIEWICZ C, EDSTRÖM K, BERG E J. Formation of a cathode electrolyte interphase on high-voltage Li-ion cathodes[J]. Chemistry of Materials, 2024, 36(19): 9729-9740. DOI: 10.1021/acs.chemmater.4c01872. |
77 | WAN G, POLLARD T P, MA L, et al. Solvent-mediated oxide hydrogenation in layered cathodes[J]. Science, 2024, 385(6714): 1230-1236. DOI: 10.1126/science.adg4687. |
78 | YU L, DAI A, ZHOU T, et al. Parasitic structure defect blights sustainability of cobalt-free single crystalline cathodes[J]. Nature Communications, 2025, 16: 434. DOI: 10.1038/s41467-024-55235-5. |
79 | KARGER L, KORNEYCHUK S, SICOLO S, et al. Decoupling substitution effects from point defects in layered Ni-rich oxide cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(41): 2402444. DOI: 10.1002/adfm.202402444. |
80 | LEE S, LEE D, MANTHIRAM A. Mixed ionic-electronic conductivity of high-nickel, single-crystal cathodes influencing the cycling stability of all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(38): 26244-26252. DOI: 10.1039/D4TA03727H. |
81 | LIU Z M, ZENG Y Q, TAN J Y, et al. Revealing the degradation pathways of layered Li-rich oxide cathodes[J]. Nature Nanotechnology, 2024, 19(12): 1821-1830. DOI: 10.1038/s41565-024-01773-4. |
82 | NAM C, KOO B, KIM J, et al. Dynamic lithium transport pathway via crack formation in phase-separating battery particles[J]. ACS Nano, 2025, 19(10): 9936-9945. DOI: 10.1021/acsnano.4c15960. |
83 | STRECK L, ROTH T, BOSCH H, et al. Analysis of transient current and heat flow during voltage holds: For 70 wt% silicon anode lithium-ion cells[J]. Journal of the Electrochemical Society, 2024, 171(11): 110530. DOI: 10.1149/1945-7111/ad940e. |
84 | SUN K, et al. Chemo-mechanics and morphological dynamics of Si electrodes in all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2025, 10(3): 1229-1234. DOI: 10.1021/acsenergylett.5c00132. |
85 | WANG Q D, ZHAO C L, WANG S W, et al. Interphase design for lithium-metal anodes[J]. Journal of the American Chemical Society, 2025, 147(11): 9365-9377. DOI: 10.1021/jacs.4c15759. |
86 | SUN Z W, DAI R, ZHANG S, et al. Microscale analysis on cycling aging effect in mechanical behavior of graphite anode coating: Morphological statistics and nanoindentation[J]. Journal of Energy Storage, 2025, 116: 116088. DOI: 10.1016/j.est.2025. 116088. |
87 | ZHANG X Y, CHENG S C, FU C K, et al. Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries[J]. Advanced Energy Materials, 2024, 14(34): 2401802. DOI: 10.1002/aenm.202401802. |
88 | LIU Z C, TAO J M, JIANG H, et al. Deciphering interfacial stability of sulfide and halide-based electrolytes via operando X-ray photoelectron spectroscopy[J]. Nano Letters, 2025, 25(11): 4605-4612. DOI: 10.1021/acs.nanolett.5c00564. |
89 | KAELI E, JIANG Z L, YANG X M, et al. Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries[J]. Energy & Environmental Science, 2025, 18(3): 1452-1463. DOI: 10.1039/D4EE04908J. |
90 | CUI Z H, LIU C, WANG F, et al. Navigating thermal stability intricacies of high-nickel cathodes for high-energy lithium batteries[J]. Nature Energy, 2025, 10(4): 490-501. DOI: 10.1038/s41560-025-01731-x. |
91 | LIU H Y, CHEN Y D, CHIEN P H, et al. Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction[J]. Nature Materials, 2025, 24(4): 581-588. DOI: 10. 1038/s41563-024-02094-6. |
92 | PARK S H, AYYASWAMY A, GJERDE J, et al. Filament-induced failure in lithium-reservoir-free solid-state batteries[J]. ACS Energy Letters, 2025, 10(3): 1174-1182. DOI: 10.1021/acsenergylett. 5c00004. |
93 | OTOYAMA M, TERASAKI N, TAKEUCHI T, et al. Visualization of local strain distributions in all-solid-state batteries with silicon negative electrodes using digital image correlation for operando/In situ microscopy images[J]. ChemElectroChem, 2025, 12(8): e202400616. DOI: 10.1002/celc.202400616. |
94 | CHEN P, QU H N, ZHENG D, et al. Long cycle stability of all-solid-state lithium-sulfur batteries at low pressure and ambient temperature: Addressing contact and diffusion kinetics[J]. Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202423633. |
95 | CHEN Z M, DU T, ANOOP KRISHNAN N M, et al. Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes[J]. Nature Communications, 2025, 16: 1057. DOI: 10.1038/s41467-025-56322-x. |
96 | SUN Y C, NING Y B, QIANG Z M, et al. Digital-twin-assisted insights into irreversible capacity and activation strategy power high-loading solid-state batteries[J]. Angewandte Chemie International Edition, 2025, DOI: 10.1002/anie.202502169. |
97 | ASHERI A, REZAEI S, GLAVAS V, et al. Microstructure impact on chemo-mechanical fracture of polycrystalline lithium-ion battery cathode materials[J]. Engineering Fracture Mechanics, 2024, 309: 110370. DOI: 10.1016/j.engfracmech.2024.110370. |
98 | SONG Y J, TAN L, GAO K, et al. Insights into cathode densification of calendering process by the combination of in situ CT and DEM[J]. Powder Technology, 2025, 453: 120667. DOI: 10.1016/j.powtec.2025.120667. |
99 | BANERJEE S, TKATCHENKO A. Non-local interactions determine local structure and lithium diffusion in solid electrolytes[J]. Nature Communications, 2025, 16: 1672. DOI: 10.1038/s41467-025-56662-8. |
100 | CAI X, ZHANG C P, CHEN J, et al. Sensorless battery expansion estimation using electromechanical coupled models and machine learning[J]. Journal of Energy Chemistry, 2025, 105: 142-157. DOI: 10.1016/j.jechem.2024.12.068. |
[1] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[2] | Ruilin HE, Tong ZHANG, Jiachun WU, Chaoyang WANG, Yonghong DENG, Guangzhao ZHANG, Xiaoxiong XU. Design of scaffold materials and their application in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1758-1775. |
[3] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[4] | Zixin XIAO, Hong ZHANG, Lin XU. Nanowires modulating ion transport and interfaces in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. |
[5] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of 100 selected recent papers on lithium batteries (December 1, 2024 to January 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(3): 1310-1330. |
[6] | Boyu LIU, Tengfei WANG, Qing PANG, Kaiyu CHEN, Hongyu WANG. Preparation and electrochemical performance of Mg-Cr co-doped LiNi0.5Mn1.5O4 cathode material [J]. Energy Storage Science and Technology, 2025, 14(3): 1097-1106. |
[7] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[8] | Hong ZHOU, Hailong YU, Liping WANG, Xuejie HUANG. Frontier monitoring and topic analysis of lithium batteries based on BERTopic model [J]. Energy Storage Science and Technology, 2025, 14(1): 406-416. |
[9] | Junfeng HAO, Guanjun CEN, Ronghan QIAO, Jing ZHU, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2024 to Nov. 30, 2024) [J]. Energy Storage Science and Technology, 2025, 14(1): 388-405. |
[10] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024 [J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244. |
[11] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[12] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[13] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[14] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[15] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||