储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4360-4369.doi: 10.19799/j.cnki.2095-4239.2025.0592

• 储能测试与评价 • 上一篇    下一篇

基于反熵权法的钠离子电池过充热失控多阶段预警方法研究

吴静云1(), 郭鹏宇2(), 黄峥1   

  1. 1.国网江苏省电力有限公司经济技术研究院,江苏 南京 210008
    2.国网江苏省电力有限公司,江苏 南京 210000
  • 收稿日期:2025-06-25 修回日期:2025-08-02 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 郭鹏宇 E-mail:673112739@qq.com;13611511237@163.com
  • 作者简介:吴静云(1989—),女,博士,主要从事电力工程设计工作,E-mail:673112739@qq.com
  • 基金资助:
    国网江苏省电力公司科技项目(J2024099)

Research on multi-stage warning method for overcharging thermal runaway of sodium-ion batteries based on anti-entropy weight method

Jingyun WU1(), Pengyu GUO2(), Zheng HUANG1   

  1. 1.State Grid Jiangsu Electric Power Company Economic and Technical Research Institute, Nanjing 210008, Jiangsu, China
    2.State Grid Jiangsu Electric Power Company, Nanjing 210000, Jiangsu, China
  • Received:2025-06-25 Revised:2025-08-02 Online:2025-11-28 Published:2025-11-24
  • Contact: Pengyu GUO E-mail:673112739@qq.com;13611511237@163.com

摘要:

钠离子电池因其资源丰富、成本低和环境友好等优势,成为新型储能领域的重要发展方向。然而在高压过充等极端工况下,钠离子电池易发生热失控,严重威胁系统运行安全。本文以185 Ah层状氧化物正极钠离子单体电池为研究对象,设计过充热失控实验平台,采集电压、温度和膨胀力三类关键参数,分析其在热失控过程中的演化趋势与特征响应。基于多参量信号变化率构建动态风险指标体系,引入反熵权法实现特征权重的自适应调整,构建可随时间演化的综合风险指标。结合热失控机理划分过程阶段,提出一套多级预警模型。实验结果表明,该方法能有效识别电池在不同阶段的热失控风险,具备良好的提前预警能力与工程应用价值,可为钠离子电池的热安全管理与智能监测提供理论依据与实践支撑。

关键词: 钠离子电池, 热失控, 反熵权法, 多参量融合, 多阶段预警

Abstract:

Sodium-ion batteries have emerged as a key direction for new energy storage because of their abundant resources, low cost, and environmental friendliness. However, under extreme conditions, such as high-voltage overcharging, sodium-ion batteries are prone to thermal runaway, posing a severe threat to system operation safety. This study focuses on a 185 Ah layered oxide-positive electrode sodium-ion single-cell battery. An experimental platform was designed to simulate the overcharge-induced thermal runaway, collecting three key parameters: voltage, temperature, and pressure. The evolution trend and characteristic response of these parameters during the thermal runaway process were analyzed. A dynamic risk index system was then constructed based on the rate of change of multiple signals. To adaptively adjust feature weights, the anti-entropy weight method was introduced, leading to the development of a comprehensive risk index that evolves over time. A multi-level warning model is proposed by dividing the process stages based on the mechanism of thermal runaway. The experimental results show that the proposed method can effectively identify the thermal runaway risk of batteries at different stages and provides a strong early-warning capability with engineering application value. These findings offer a theoretical basis and practical support for the thermal safety management and intelligent monitoring of sodium-ion batteries.

Key words: sodium-ion battery, thermal runaway, anti-entropy weight method, multi-parameter fusion, multi-stage warning

中图分类号: