储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 546-567.doi: 10.19799/j.cnki.2095-4239.2023.0577

• 储能系统与工程 • 上一篇    下一篇

COMSOL Multiphysics在锂离子电池中的应用

李校磊1(), 高健2(), 周伟东1,2(), 李泓3,4()   

  1. 1.北京化工大学材料科学与工程学院
    2.北京化工大学化学工程学院,北京 100029
    3.中国科学院物理研究所,北京 100190
    4.北京卫蓝新能源科技有限公司,北京 102600
  • 收稿日期:2023-08-28 修回日期:2023-09-14 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 高健,周伟东,李泓 E-mail:lixiaolei@buct.edu.cn;gaojian@buct.edu.cn;zhouwd@buct.edu.cn;hli@mail.iphy.ac.cn
  • 作者简介:李校磊(1996—),男,博士研究生,研究方向为锂离子固态电池,E-mail:lixiaolei@buct.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFE0202400);国家自然科学基金(22109005);贝斯林智慧教育项目(2022BL039);北京卫蓝新能源科技有限公司项目

Application of COMSOL multiphysics in lithium-ion batteries

Xiaolei LI1(), Jian GAO2(), Weidong ZHOU1,2(), Hong LI3,4()   

  1. 1.College of Materials Science and Engineering
    2.College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    3.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    4.Beijing Weilan New Energy Technology; Company Limited, Beijing 102600, China
  • Received:2023-08-28 Revised:2023-09-14 Online:2024-02-28 Published:2024-03-01
  • Contact: Jian GAO, Weidong ZHOU, Hong LI E-mail:lixiaolei@buct.edu.cn;gaojian@buct.edu.cn;zhouwd@buct.edu.cn;hli@mail.iphy.ac.cn

摘要:

作为一种具有前景的能量存储系统,锂离子电池需要进一步提高能量密度、功率密度、可靠性和循环稳定性,以满足不断增长的大型能源存储、电动汽车和便携式电子设备需求。当前对锂离子电池的实验研究仍然面临多个挑战,这些挑战包括电解液的导电性和安全性、高能量负极的沉积-剥离机制的优化、高能量正极的循环电压和容量维持、高电流条件下的界面极化和容量释放,以及在极端电流-温度-针刺条件下的热失控管理等问题。这些问题涉及到电-化-力-热等多个场的耦合作用,需要进行协同优化处理。COMSOL Multiphysics提供了一种可行的工具,通过求解多物理场耦合的连续方程,能够同时考虑载流子浓度、电流密度、电-化学势、温度、应力/应变和几何形态等综合信息的演化。本文概述了该工具在锂离子电池的电解液、负极和正极设计等方面的研究,并聚焦于多场耦合对电池性能的综合影响、多场耦合模拟方法以及理论模拟与实验表征的结合。最后,本文对理论与实验联合研究中的多场和多尺度问题进行了展望。

关键词: COMSOL Multiphysics, 锂离子电池, 多场耦合, 模拟计算

Abstract:

As a promising energy storage system, Li-ion batteries require continuous improvements in terms of energy density, power density, reliability, and cyclic stability to meet the growing demands of large-scale energy storage, electric vehicles, and portable electronic equipment. Despite the abundance of frontier issues related to multiphysics investigations, experimental work is still challenging. However, the synergistic improvement in the conductivity and safety of electrolytes, optimization of deposition-stripping mechanisms of high-energy anodes, maintenance of cyclic voltage and capacity of high-energy cathodes, interface polarization, and capacity release under high current, and management of thermal runaway under extreme current-temperature-acupuncture conditions exist through the multifield coupling of electrical-chemical-mechanical-thermal effects. COMSOL multiphysics provides a feasible tool for solving the continuity equation coupled with multiple physical fields, considering comprehensive information such as carrier concentration, current density, electrical-chemical potential, temperature, stress/strain, and morphology evolution. This study reviews the application of tools in the electrolytes, anodes, and cathodes of lithium-ion batteries, focusing on the comprehensive influences of multifield coupling on battery performance, the multifield coupling simulation method, and the combination of theoretical, simulation, and experimental characterization. Finally, the multifield and multiscaled issues in theoretical-experimental joint research are prospected.

Key words: COMSOL Multiphysics, lithium-ion battery, multi-field coupling, simulated calculation

中图分类号: