储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1487-1495.doi: 10.19799/j.cnki.2095-4239.2023.0903
收稿日期:
2023-12-15
修回日期:
2024-01-03
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
汪靖伦
E-mail:1016957950@qq.com;jlwang@hnust.edu.cn
作者简介:
卢俊杰(2002—),男,硕士研究生,从事新型功能电解液的设计合成及性能研究,E-mail:1016957950@qq.com;
基金资助:
Junjie LU(), Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG()
Received:
2023-12-15
Revised:
2024-01-03
Online:
2024-05-28
Published:
2024-05-28
Contact:
Jinglun WANG
E-mail:1016957950@qq.com;jlwang@hnust.edu.cn
摘要:
锂/氟化碳(Li/CF x )电池作为一种具有最高理论比容量(860 mAh/g)和能量密度(2180 Wh/kg)的一次电池,具有高安全性能、低自放电率、平稳的放电电压和环境友好等优点,广泛应用于医疗、军事、电子科技和航空航天等领域。电解液作为Li/CF x 电池必不可缺的一部分,在正负极之间起到传递离子的作用,具有重要的研究意义。本文从Li/CF x 电池的低温性能、倍率性能以及放电平台等方面综述了Li/CF x 电池电解液的研究进展;重点阐述了电解液理化性质、界面浸润与相容、锂离子溶剂化结构、C—F键活化和LiF形成与溶解等因素对Li/CF x 电池放电性能的影响;最后,对Li/CF x 电池新型电解液的研究提出了思考与展望。
中图分类号:
卢俊杰, 彭丹, 倪文静, 杨媛, 汪靖伦. 锂/氟化碳电池电解液的研究进展[J]. 储能科学与技术, 2024, 13(5): 1487-1495.
Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery[J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495.
表1
电解液对Li/CF x 电池低温性能的影响"
CF x | Electrolyte | Temp./℃ | E1/2/V | Cut off voltage /V | Capacity /(mAh/g) | Discharge rate | Ref. |
---|---|---|---|---|---|---|---|
CF0.65 | 0.5 mol/L LiBF4-PC∶DME(2∶8, 体积比)+1.5%(体积分数)TTFEB | -60 | ~1.5 | 0.5 | 275 | 0.2C | [ |
CF x | 1 mol/L LiBF4-GBL+2% (体积分数)15-crown-5 | -45 | 1.5 | 0.25 | 140 | — | [ |
CF x | 1mol/L LiPF6-EC∶DMC∶EMC (1∶1∶3, 体积比)+2%(体积分数)15-crown-5 | -50 | 1.3 | 0.25 | 110 | — | [ |
CF x | 1 mol/L LiBF4-PC∶DME (1∶1, 体积比)+10%(质量分数)SN | 0 | 2.2 | 1.5 | 527 | 0.5C | [ |
CF0.99~1.08 | 0.5 mol/L LiBF4-AN∶BL (1∶1, 体积比) | -50 | ~1.8 | 1.5 | ~580 | 0.02C | [ |
CF1.0 | 1 mol/L LiBF4-Me2O∶PC (6.5∶1, 体积比) | -60 | ~2.1 | 1.5 | 780 | 10 mA/g | [ |
CF1.0 | 1 mol/L LiBF4-PC∶MB (1∶2, 体积比) | -70 | ~1.0 | 0.5 | 240 | 0.1C | [ |
CF1.0 | 0.78 mol/L LiBF4+0.22 mol/L LiFSI-PC∶DME∶iBA (23∶69∶8, 体积比) | -60 | ~1.3 | 1.0 | 433 | 0.1C | [ |
表2
电解液对Li/CF x 电池倍率性能的影响"
CF x | Electrolyte | Temp./℃ | E1/2/V | Cut off voltage/V | Capacity/(mAh/g) | Discharge rate | Ref. |
---|---|---|---|---|---|---|---|
CF0.99~1.08 | 1 mol/L LiClO4-TTE∶DME∶PC (2∶2∶1, 体积比) | 25 | ~1.85 | 1.5 | 425 | 5000 mA/g | [ |
CF1.0 | 1 mol/L LiBF4-PC∶DME∶A(1∶1∶1, 体积比 ) | 50 | 2.16 | 1.5 | 758 | 2 C | [ |
CF1.15 | 1 mol/L LiBF4-EC∶DMC (1∶1, 体积比)+0.01 mol/L BF3(g) | 25 | ~1.8 | 1.5 | 416 | 15 C | [ |
CF1.0 | 1 mol/L LiBF4-PC∶DME (1∶1, 体积比)+1%(质量分数)PRZ | 25 | 2.60 | 1.5 | 770 | 1000 mA/g | [ |
CF1.11 | 1 mol/L LiBF4-F5EON∶DME (1∶1, 体积比) | 25 | 2.20 | 1.5 | 771 | 1000 mA/g | [ |
1 | 国家发展和改革委员会, 国家能源局. "十四五"新型储能发展实施方案[R/OL]. [2023-01-05].https://www.gov.cn/zhengce/zhengceku/2022-03/22/5680417/files/41a50cec48e84cc4adfca855c3444f6b.pdf |
2 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
3 | WANG H S, YU Z A, KONG X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616. |
4 | CAO W Z, LI Q, YU X Q, et al. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78. |
5 | LIM H D, PARK H, KIM H, et al. A new perspective on Li-SO2 batteries for rechargeable systems[J]. Angewandte Chemie (International Ed in English), 2015, 54(33): 9663-9667. |
6 | GUÉRIN K, DUBOIS M, HOUDAYER A, et al. Applicative performances of fluorinated carbons through fluorination routes: A review[J]. Journal of Fluorine Chemistry, 2012, 134: 11-17. |
7 | GAO M T, CAI D M, LUO S F, et al. Research progress in fluorinated carbon sources and the discharge mechanism for Li/CFx primary batteries[J]. Journal of Materials Chemistry A, 2023, 11(31): 16519-16538. |
8 | LEUNG K, SCHORR N B, MAYER M, et al. Edge-propagation discharge mechanism in CFx batteries—a first-principles and experimental study[J]. Chemistry of Materials, 2021, 33(5): 1760-1770. |
9 | 汤才, 蒋江民, 王新峰, 等. Li/CFx一次电池研究进展[J]. 储能科学与技术, 2023, 12(4): 1093-1109. |
TANG C, JIANG J M, WANG X F, et al. Research progress of Li/CFx primary batteries[J]. Energy Storage Science and Technology, 2023, 12(4): 1093-1109. | |
10 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
11 | 陈雨晴, 张洪章, 于滢, 等. 锂硫一次电池的研究现状及展望[J]. 储能科学与技术, 2017, 6(3): 529-533. |
CHEN Y Q, ZHANG H Z, YU Y, et al. The R & D status and prospects for primary lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(3): 529-533. | |
12 | CHEN X, ZHANG X Q, LI H R, et al. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in Lithium batteries[J]. Batteries & Supercaps, 2019, 2(2): 114. |
13 | WHITACRE J F, WEST W C, SMART M C, et al. Enhanced low-temperature performance of Li-CFx batteries[J]. Electrochemical and Solid-State Letters, 2007, 10(7): A166. |
14 | ZHANG S S, XU K, JOW T R. Study of LiBF4 as an electrolyte salt for a Li-ion battery[J]. Journal of the Electrochemical Society, 2002, 149(5): A586. |
15 | MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. |
16 | PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2022, 11: 100145. |
17 | WATANABE N. Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries[J]. Solid State Ionics, 1980, 1(1/2): 87-110. |
18 | NAKAJIMA T, KOH M, GUPTA V, et al. Electrochemical behavior of graphite highly fluorinated by high oxidation state complex fluorides and elemental fluorine[J]. Electrochimica Acta, 2000, 45(10): 1655-1661. |
19 | ZHANG S X, KONG L C, LI Y, et al. Fundamentals of Li/CFx battery design and application[J]. Energy & Environmental Science, 2023, 16(5): 1907-1942. |
20 | BAN J, JIAO X X, FENG Y Y, et al. All-temperature, high-energy-density Li/CFx batteries enabled by a fluorinated ether as a cosolvent[J]. ACS Applied Energy Materials, 2021, 4(4): 3777-3784. |
21 | WATANABE N, NAKAJIMA T, HAGIWARA R. Discharge reaction and overpotential of the graphite fluoride cathode in a nonaqueous lithium cell[J]. Journal of Power Sources, 1987, 20(1/2): 87-92. |
22 | FANG Z, YANG Y, ZHENG T L, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte[J]. Energy Storage Materials, 2021, 42: 477-483. |
23 | YIN Y J, HOLOUBEK J, LIU A, et al. Ultralow-temperature Li/CFx batteries enabled by fast-transport and anion-pairing liquefied gas electrolytes[J]. Advanced Materials, 2023, 35(3): e2207932. |
24 | HAN S S, YU T H, MERINOV B V, et al. Unraveling structural models of graphite fluorides by density functional theory calculations[J]. Chemistry of Materials, 2010, 22(6): 2142-2154. |
25 | PISCHEDDA V, RADESCU S, DUBOIS M, et al. Experimental and DFT high pressure study of fluorinated graphite (C2F)N[J]. Carbon, 2017, 114: 690-699. |
26 | NAGASUBRAMANIAN G, SANCHEZ B. A new chemical approach to improving discharge capacity of Li/(CFx)n cells[J]. Journal of Power Sources, 2007, 165(2): 630-634. |
27 | LI Q, XUE W, SUN X, et al. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries[J]. Energy Storage Materials, 2021, 38: 482-488. |
28 | DONG X L, WANG Y G, XIA Y Y. Promoting rechargeable batteries operated at low temperature[J]. Accounts of Chemical Research, 2021, 54(20): 3883-3894. |
29 | ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): 2107899. |
30 | HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. |
31 | KULOVA T L, SKUNDIN A M. A critical review of electrode materials and electrolytes for Low- Temperature Lithium-Ion Batteries[J]. International Journal of Electrochemical Science, 2020, 15(9): 8638-8661. |
32 | 胡华坤, 薛文东, 霍思达, 等. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
HU H K, XUE W D, HUO S D, et al. Review of SEI film forming additives for electrolyte of lithium ion battery[J]. CIESC Journal, 2022, 73(4): 1436-1454. | |
33 | IGNATOVA A A, YARMOLENKO O V, TULIBAEVA G Z, et al. Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFx-systems at temperatures up to-50 ℃[J]. Journal of Power Sources, 2016, 309: 116-121. |
34 | WANG N, LUO Z Y, ZHANG Q F, et al. Succinonitrile broadening the temperature range of Li/CFx primary batteries[J]. Journal of Central South University, 2023, 30(2): 443-453. |
35 | HOLOUBEK J, KIM K, YIN Y J, et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries[J]. Energy & Environmental Science, 2022, 15(4): 1647-1658. |
36 | HOLOUBEK J, BASKIN A, LAWSON J W, et al. Predicting the ion desolvation pathway of lithium electrolytes and their dependence on chemistry and temperature[J]. The Journal of Physical Chemistry Letters, 2022, 13(20): 4426-4433. |
37 | ZHANG S S, FOSTER D, READ J. A low temperature electrolyte for primary Li/CFx batteries[J]. Journal of Power Sources, 2009, 188(2): 532-537. |
38 | LIANG H J, SU M Y, ZHAO X X, et al. Weakly-solvating electrolytes enable ultralow-temperature (-80 ℃) and high-power CFx/Li primary batteries[J]. Science China Chemistry, 2023, 66(7): 1982-1988. |
39 | XUE W R, QIN T, LI Q, et al. Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes[J]. Energy Storage Materials, 2022, 50: 598-605. |
40 | 刘雯, 杨炜婧, 郭瑞, 等. 功率型锂/氟化碳一次电池的优化设计研究进展[J]. 化学通报, 2019, 82(6): 483-487. |
LIU W, YANG W J, GUO R, et al. Progress in optimization design of high-power lithium/carbon fluorides primary batteries[J]. Chemistry, 2019, 82(6): 483-487. | |
41 | LI Y, FENG Y Y, FENG W. Deeply fluorinated multi-wall carbon nanotubes for high energy and power densities lithium/carbon fluorides battery[J]. Electrochimica Acta, 2013, 107: 343-349. |
42 | 张懋慧. 有机电解液对氟化碳电极界面性能研究[D]. 昆明: 云南师范大学, 2014. |
ZHANG M H. Study on interfacial properties of organic electrolyte to fluorocarbon electrode[D]. Kunming: Yunnan Normal University, 2014. | |
43 | ZHANG Y Q, JIANG J M, ZHANG L, et al. BF3-based electrolyte additives promote electrochemical reactions to boost the energy density of Li/CFx primary batteries[J]. Electrochimica Acta, 2023, 470: 143311. |
44 | ZHOU X, PENG D, DENG K Q, et al. Synthesis and characterization of novel fluorinated nitriles as non-flammable and high-voltage electrolytes for lithium/lithium-ion batteries[J]. Journal of Power Sources, 2023, 557: 232557. |
45 | ZHOU X, KOZDRA M, RAN Q, et al. 3-(2, 2, 2-Trifluoroethoxy)propionitrile-based electrolytes for high energy density lithium metal batteries[J]. Nanoscale, 2022, 14(46): 17237-17246. |
46 | 汪靖伦, 卢俊杰. 一种高比容量高倍率性能的锂-氟化碳电池电解液: CN116470080A[P]. 2023-07-21. |
WANG J L, LU J J. Lithium-carbon fluoride battery electrolyte with high specific capacity and high rate capability: CN116470080A[P]. 2023-07-21. | |
47 | GUÉRIN K, YAZAMI R, HAMWI A. Hybrid-type graphite fluoride as cathode material in primary lithium batteries[J]. Electrochemical and Solid-State Letters, 2004, 7(6): A159. |
48 | PANG C K, DING F, SUN W B, et al. A novel dimethyl sulfoxide/1, 3-dioxolane based electrolyte for lithium/carbon fluorides batteries with a high discharge voltage plateau[J]. Electrochimica Acta, 2015, 174: 230-237. |
49 | FU A, XIAO Y K, JIAN J H, et al. Boosting the energy density of Li||CFx primary batteries using a 1, 3-dimethyl-2-imidazolidinone-based electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57470-57480. |
50 | XIAO Y K, JIAN J H, FU A, et al. Substantially promoted energy density of Li||CFx primary battery enabled by Li+-DMP coordinated structure[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(19): 6217-6229. |
51 | KRISHNAMURTHY V, VISWANATHAN V. Beyond transition metal oxide cathodes for electric aviation: The case of rechargeable CFx[J]. ACS Energy Letters, 2020, 5(11): 3330-3335. |
[1] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[2] | 赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. |
[3] | 石敏, 蒋鹏杰, 徐琛, 贺鑫, 梁宵. 抑制锂金属负极枝晶的电解液调控策略[J]. 储能科学与技术, 2024, 13(5): 1620-1634. |
[4] | 郭军丽. 电化学储能电站消防安全法律治理对策[J]. 储能科学与技术, 2024, 13(5): 1744-1747. |
[5] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[6] | 宋梦琼, 彭宇, 廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术, 2024, 13(2): 578-585. |
[7] | 周洋, 韩培玉, 牛迎春, 徐春明, 徐泉. 金属有机框架衍生的C-Bi/CC电极制备及其在铁铬液流电池中的电化学性能[J]. 储能科学与技术, 2024, 13(2): 381-389. |
[8] | 郭秀丽, 周小龙, 邹才能, 唐永炳. 水系双离子电池的研究进展与展望[J]. 储能科学与技术, 2024, 13(2): 462-479. |
[9] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[10] | 李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. |
[11] | 梁宏毅, 陈锋, 甘友毅, 邵丹. 动力锂电池三元正极低温性能研究[J]. 储能科学与技术, 2024, 13(1): 293-298. |
[12] | 陈珊珊, 郑翔, 王若, 原铭蔓, 彭威, 鲁博明, 张光照, 王朝阳, 王军, 邓永红. 锂离子电池硅基负极电解液添加剂研究进展:挑战与展望[J]. 储能科学与技术, 2024, 13(1): 279-292. |
[13] | 肖也, 徐磊, 闫崇, 黄佳琦. 锂电池用参比电极的设计与应用[J]. 储能科学与技术, 2024, 13(1): 82-91. |
[14] | 曾坤, 郑晓妍, 龚慧玲, 邹博, 陈凯, 晏忠钠. 基于锂负极的液态金属电池研究进展[J]. 储能科学与技术, 2024, 13(1): 299-310. |
[15] | 闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||