Energy Storage Science and Technology
Jiayun FANG1(), Jianfang JIA1,2(
)
Received:
2025-05-26
Revised:
2025-06-29
Contact:
Jianfang JIA
E-mail:330678689@qq.com;jiajianfang@nuc.edu.cn
CLC Number:
Jiayun FANG, Jianfang JIA. Early Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Multi-Scale Feature Fusion[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0488.
Fig. 1
Capacity Degradation Curve of the Battery: (a) Actual capacity degradation curve of the CALCE dataset; (b) Actual capacity degradation curve of the MIT dataset; (c) Capacity degradation curve of CALCE dataset after removing outliers; (d) Capacity degradation curve of MIT dataset after removing outliers"
Table 2
Parameter Settings for Predictive Models"
参数 | WMA-LSTM参数值(IMF-H) | WMA-LSTM参数值(IMF-M&L) | WMA-GRU参数值 (IMF-T) |
---|---|---|---|
Training set | 9.5% | 9.5% | 9.5% |
Test set | 90.5% | 90.5% | 90.5% |
Optimizer | Adam | Adam | Adam |
MaxEpochs | 1100 | 800 | 800 |
InitialLearnRate | 0.001 | 0.001 | 0.001 |
NumHiddenUnits | 78 | 80 | 77 |
LearnRateDropPeriod | 0.9*MaxEpochs | 0.9*MaxEpochs | 0.8*MaxEpochs |
LearnRateDropFactor | 0.2 | 0.2 | 0.01 |
L2Regularization | 0.0001 | 0.01 | 0.0001 |
Table 5
Prediction error metrics for different models"
电池名称 | 误差指标 | Proposed method | LSTM | BiLSTM | GRU | BiGRU | CNN |
---|---|---|---|---|---|---|---|
CS2-35 | RMSE | 0.012795 | 0.017819 | 0.04346 | 0.042771 | 0.051151 | 0.04906 |
MAE | 0.0086551 | 0.011417 | 0.028255 | 0.028971 | 0.035395 | 0.031632 | |
MAPE | 1.4821% | 2.0284% | 5.4588% | 5.4487% | 6.5359% | 6.1526% | |
CS2-36 | RMSE | 0.010392 | 0.017327 | 0.056927 | 0.043013 | 0.041721 | 0.2533 |
MAE | 0.0085821 | 0.010326 | 0.038947 | 0.031266 | 0.027494 | 0.17418 | |
MAPE | 1.6543% | 3.06% | 9.9642% | 7.5431% | 7.3154% | 44.401% | |
CS2-37 | RMSE | 0.012757 | 0.013615 | 0.039321 | 0.02109 | 0.032949 | 0.052894 |
MAE | 0.0084692 | 0.0062687 | 0.024614 | 0.015302 | 0.021141 | 0.034002 | |
MAPE | 1.677% | 1.5531% | 5.0805% | 2.8412% | 4.2859% | 6.7799% | |
CS2-38 | RMSE | 0.013085 | 0.019694 | 0.036283 | 0.023644 | 0.048999 | 0.078381 |
MAE | 0.010647 | 0.0095519 | 0.022347 | 0.016352 | 0.032896 | 0.057991 | |
MAPE | 1.7069% | 2.1601% | 4.45% | 3.0372% | 6.2254% | 10.3913% |
[1] | KHALEGHI S, HOSEN M S, KARIMI D, et al. Developing an online data-driven approach for prognostics and health management of lithium-ion batteries [J]. Applied Energy, 2022, 308: 118348. |
[2] | KIM S, CHOI Y Y, KIM K J, et al. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning [J]. Journal of Energy Storage, 2021, 41: 102893. |
[3] | XIA G, JIA C, SHI Y, et al. Remaining useful life prediction of lithium-ion batteries by considering trend filtering segmentation under fuzzy information granulation [J]. Energy, 2025, 318: 134810. |
[4] | KUMAR R, GOEL V. A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review [J]. Journal of Energy Storage, 2023, 71: 108025. |
[5] | LAI X, QIAN L, TANG X, et al. Early-stage remaining useful life prediction for lithium-ion batteries based on geometric output construction [J]. Journal of Energy Storage, 2025, 114: 115792. |
[6] | SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery [J]. Applied Energy, 2021, 300: 117346. |
[7] | YANG M, SUN X, LIU R, et al. Predict the lifetime of lithium-ion batteries using early cycles: A review [J]. Applied Energy, 2024, 376: 124171. |
[8] | ELMAHALLAWY M, ELFOULY T, ALOUANI A, et al. A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction [J]. IEEE Access, 2022, 10: 119040-119070. |
[9] | MA G, WANG Z, LIU W, et al. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries [J]. Knowledge-Based Systems, 2023, 259:110012. |
[10] | ZHAO W, DING W, ZHANG S, et al. Enhancing lithium-ion battery lifespan early prediction using a multi-branch vision transformer model [J]. Energy, 2024, 302:131816. |
[11] | 田成文, 孙丙香, 赵鑫泽, 等. 基于数据驱动的锂离子电池快速寿命预测 [J] 储能科学与技术. 2024, 13(09): 3103-3111. |
Tian Chengwen, Sun Bingxiang, Zhao Xinze, et al. Data-driven rapid life prediction of lithium-ion batteries [J] Energy Storage Science and Technology. 2024, 13(09): 3103-3111. | |
[12] | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation [J]. Nature Energy, 2019, 4(5): 383-391. |
[13] | KE Y, JIANG Y, ZHU R, et al. Early Prediction of Knee Point and Knee Capacity for Fast-Charging Lithium-Ion Battery With Uncertainty Quantification and Calibration [J]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 2873-2885. |
[14] | CELIK B, SANDT R, SANTOS L, et al. Prediction of Battery Cycle Life Using Early-Cycle Data, Machine Learning and Data Management [J]. Batteries, 2022, 8: 266. |
[15] | AFSHARI S S, CUI S, XU X, et al. Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential Capacity Curves [J]. Ieee Transactions on Instrumentation and Measurement, 2022, 71: 1-9. |
[16] | 李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法 [J] 储能科学与技术. 2024, 1-14. |
Li Jiabo, Wang Zhixuan, Tian Di, et al. Prediction method of remaining service life of lithium-ion battery based on SSA-LSTM combination under variable mode decomposition [J] Energy Storage Science and Technology. 2024, 1-14. | |
[17] | JIA J, WANG K, SHI Y, et al. A multi-scale state of health prediction framework of lithium-ion batteries considering the temperature variation during battery discharge [J]. Journal of Energy Storage, 2021, 42: 103076. |
[18] | WEI M, YE M, ZHANG C, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling [J]. Energy, 2023, 283: 129086. |
[19] | GAO K, SUN J, HUANG Z, et al. Capacity prediction of lithium-ion batteries based on ensemble empirical mode decomposition and hybrid machine learning [J]. Ionics, 2024, 30(11): 6915-6932. |
[20] | WILLIARD N, HE W, OSTERMAN M, et al. Comparative Analysis of Features for Determining State of Health in Lithium-Ion Batteries [J]. International Journal of Prognostics and Health Management, 2013, 4: 1-7. |
[21] | LI H, LI Z, MO W. A time varying filter approach for empirical mode decomposition [J]. Signal Processing, 2017, 138:146-158. |
[22] | LIU C, WU Y, XU Z, et al. Short-term Power Load Prediction Method for High Voltage Power Cables Based on IGOA-VMD-LSTM-MHSAM; proceedings of the 2024 The 9th International Conference on Power and Renewable Energy (ICPRE), F 20-23 Sept. 2024, 2024 [C].// China: IEEE, 2024: 1685-1690. |
[23] | IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data [J]. Information Sciences, 2023, 622: 178-210. |
[24] | HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory [J]. Neural Computation, 1997, 9(8): 1735-1780. |
[25] | JIAO M, WANG D Q, QIU J L. A GRU-RNN based momentum optimized algorithm for SOC estimation [J]. JOURNAL OF POWER SOURCES, 2020, 459: 228051. |
[26] | GHASEMI M, DERICHE M, TROJOVSKý P, et al. An efficient bio-inspired algorithm based on humpback whale migration for constrained engineering optimization [J]. Results in Engineering, 2025, 25: 104215. |
[1] | Zheng CHEN, Gongdong DUO, Jiangwei SHEN, Shiquan SHEN, Yu LIU, Fuxing WEI. State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM [J]. Energy Storage Science and Technology, 2025, 14(6): 2476-2487. |
[2] | Jingjing RUAN, Xiangkun WU, Yonghui LI, Chongchong ZHAO, Shenshen LI, Tongfei WANG, Shengjie LIANG, Guihong GAO. Preparation and performance studies of low-cost graphite thick dry electrodes [J]. Energy Storage Science and Technology, 2025, 14(6): 2248-2255. |
[3] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
[4] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[5] | Xiaolan WU, Pengjie MA, Zhifeng BAI, Chenglong LIU, Guifang GUO, Jinhua ZHANG. A kind of intelligent PID double-layer active balancing control method for lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(3): 1150-1159. |
[6] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
[7] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[8] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[9] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
[10] | Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 755-769. |
[11] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[12] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. |
[13] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[14] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[15] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||