Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4346-4359.doi: 10.19799/j.cnki.2095-4239.2025.0488
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jiayun FANG1(
), Jianfang JIA1,2(
)
Received:2025-05-26
Revised:2025-06-29
Online:2025-11-28
Published:2025-11-24
Contact:
Jianfang JIA
E-mail:330678689@qq.com;jiajianfang@nuc.edu.cn
CLC Number:
Jiayun FANG, Jianfang JIA. Early remaining useful life prediction of lithium-ion batteries based on multiscale feature fusion[J]. Energy Storage Science and Technology, 2025, 14(11): 4346-4359.
Table 2
Parameter settings for predictive models"
| 参数 | WMA-LSTM参数值(IMF-H) | WMA-LSTM参数值(IMF-M&L) | WMA-GRU参数值(IMF-T) |
|---|---|---|---|
| Training set | 9.5% | 9.5% | 9.5% |
| Test set | 90.5% | 90.5% | 90.5% |
| Optimizer | Adam | Adam | Adam |
| MaxEpochs | 1100 | 800 | 800 |
| InitialLearnRate | 0.001 | 0.001 | 0.001 |
| NumHiddenUnits | 78 | 80 | 77 |
| LearnRateDropPeriod | 0.9*MaxEpochs | 0.9*MaxEpochs | 0.8*MaxEpochs |
| LearnRateDropFactor | 0.2 | 0.2 | 0.01 |
| L2Regularization | 0.0001 | 0.01 | 0.0001 |
Table 5
Prediction error metrics for different models"
| 电池名称 | 误差指标 | Proposed method | LSTM | BiLSTM | GRU | BiGRU | CNN |
|---|---|---|---|---|---|---|---|
| CS2-35 | RMSE | 0.012795 | 0.017819 | 0.04346 | 0.042771 | 0.051151 | 0.04906 |
| MAE | 0.0086551 | 0.011417 | 0.028255 | 0.028971 | 0.035395 | 0.031632 | |
| MAPE | 1.4821% | 2.0284% | 5.4588% | 5.4487% | 6.5359% | 6.1526% | |
| CS2-36 | RMSE | 0.010392 | 0.017327 | 0.056927 | 0.043013 | 0.041721 | 0.2533 |
| MAE | 0.0085821 | 0.010326 | 0.038947 | 0.031266 | 0.027494 | 0.17418 | |
| MAPE | 1.6543% | 3.06% | 9.9642% | 7.5431% | 7.3154% | 44.401% | |
| CS2-37 | RMSE | 0.012757 | 0.013615 | 0.039321 | 0.02109 | 0.032949 | 0.052894 |
| MAE | 0.0084692 | 0.0062687 | 0.024614 | 0.015302 | 0.021141 | 0.034002 | |
| MAPE | 1.677% | 1.5531% | 5.0805% | 2.8412% | 4.2859% | 6.7799% | |
| CS2-38 | RMSE | 0.013085 | 0.019694 | 0.036283 | 0.023644 | 0.048999 | 0.078381 |
| MAE | 0.010647 | 0.0095519 | 0.022347 | 0.016352 | 0.032896 | 0.057991 | |
| MAPE | 1.7069% | 2.1601% | 4.45% | 3.0372% | 6.2254% | 10.3913% |
| [1] | KHALEGHI S, HOSEN M S, KARIMI D, et al. Developing an online data-driven approach for prognostics and health management of lithium-ion batteries[J]. Applied Energy, 2022, 308: 118348. DOI: 10.1016/j.apenergy.2021.118348. |
| [2] | KIM S, CHOI Y Y, KIM K J, et al. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning[J]. Journal of Energy Storage, 2021, 41: 102893. DOI: 10.1016/j.est.2021.102893. |
| [3] | XIA G S, JIA C Y, SHI Y H, et al. Remaining useful life prediction of lithium-ion batteries by considering trend filtering segmentation under fuzzy information granulation[J]. Energy, 2025, 318: 134810. DOI: 10.1016/j.energy.2025.134810. |
| [4] | KUMAR R, GOEL V. A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review[J]. Journal of Energy Storage, 2023, 71: 108025. DOI: 10.1016/j.est.2023.108025. |
| [5] | LAI X, QIAN L L, TANG X P, et al. Early-stage remaining useful life prediction for lithium-ion batteries based on geometric output construction[J]. Journal of Energy Storage, 2025, 114: 115792. DOI: 10.1016/j.est.2025.115792. |
| [6] | SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI: 10.1016/j.apenergy.2021.117346. |
| [7] | YANG M X, SUN X F, LIU R, et al. Predict the lifetime of lithium-ion batteries using early cycles: A review[J]. Applied Energy, 2024, 376: 124171. DOI: 10.1016/j.apenergy.2024.124171. |
| [8] | ELMAHALLAWY M, ELFOULY T, ALOUANI A, et al. A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction[J]. IEEE Access, 2022, 10: 119040-119070. |
| [9] | MA G J, WANG Z D, LIU W B, et al. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries[J]. Knowledge-Based Systems, 2023, 259: 110012. DOI: 10.1016/j.knosys.2022.110012. |
| [10] | ZHAO W J, DING W, ZHANG S J, et al. Enhancing lithium-ion battery lifespan early prediction using a multi-branch vision transformer model[J]. Energy, 2024, 302: 131816. DOI: 10.1016/j.energy.2024.131816. |
| [11] | 翟健帆, 李波, 李永利, 等. 基于弛豫电压模型的锂离子电池RUL预测[J]. 电池, 2024,54(4):542-547. DOI: 10.19535/j.1001-1579.2024.04.021. |
| ZHAI J F, LI B, LI Y L, et al. RUL prediction of Li-ion battery based on relaxation voltage model[J]. Dianchi(Battery Bimonthly), 2024, 54(4): 542-547. DOI: 10.19535/j.1001-1579.2024.04.021. | |
| [12] | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. DOI: 10.1038/s41560-019-0356-8. |
| [13] | KE Y Q, JIANG Y Y, ZHU R, et al. Early prediction of knee point and knee capacity for fast-charging lithium-ion battery with uncertainty quantification and calibration[J]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 2873-2885. DOI: 10.1109/TTE.2023.3304670. |
| [14] | CELIK B, SANDT R, DOS SANTOS L C P, et al. Prediction of battery cycle life using early-cycle data, machine learning and data management[J]. Batteries, 2022, 8(12): 266. DOI: 10.3390/batteries8120266. |
| [15] | AFSHARI S S, CUI S H, XU X Y, et al. Remaining useful life early prediction of batteries based on the differential voltage and differential capacity curves[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 6500709. DOI: 10.1109/TIM.2021. 3117631. |
| [16] | 李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732. |
| LI J B, WANG Z X, TIAN D, et al. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition[J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732. | |
| [17] | JIA J F, WANG K K, SHI Y H, et al. A multi-scale state of health prediction framework of lithium-ion batteries considering the temperature variation during battery discharge[J]. Journal of Energy Storage, 2021, 42: 103076. DOI: 10.1016/j.est.2021.103076. |
| [18] | WEI M, YE M, ZHANG C W, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling[J]. Energy, 2023, 283: 129086. DOI: 10.1016/j.energy.2023.129086. |
| [19] | GAO K P, SUN J J, HUANG Z Y, et al. Capacity prediction of lithium-ion batteries based on ensemble empirical mode decomposition and hybrid machine learning[J]. Ionics, 2024, 30(11): 6915-6932. DOI: 10.1007/s11581-024-05768-y. |
| [20] | WILLIARD N, HE W, OSTERMAN M, et al. Comparative analysis of features for determining state of health in lithium-ion batteries[J]. International Journal of Prognostics and Health Management, 2013, 4(1): DOI: 10.36001/ijphm.2013.v4i1.1437 |
| [21] | LI H, LI Z, MO W. A time varying filter approach for empirical mode decomposition[J]. Signal Processing, 2017, 138: 146-158. DOI: 10.1016/j.sigpro.2017.03.019. |
| [22] | LIU C, WU Y Y, XU Z L, et al. Short-term power load prediction method for high voltage power cables based on IGOA-VMD-LSTM-MHSAM[C]// 2024 The 9th International Conference on Power and Renewable Energy (ICPRE). IEEE, 2024: 1685-1690. DOI: 10.1109/ICPRE62586.2024.10768365. |
| [23] | IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178-210. DOI: 10.1016/j.ins.2022.11.139. |
| [24] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735. |
| [25] | JIAO M, WANG D Q, QIU J L. A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources, 2020, 459: 228051. DOI: 10.1016/j.jpowsour.2020.228051. |
| [26] | GHASEMI M, DERICHE M, TROJOVSKÝ P, et al. An efficient bio-inspired algorithm based on humpback whale migration for constrained engineering optimization[J]. Results in Engineering, 2025, 25: 104215. DOI: 10.1016/j.rineng.2025.104215. |
| [1] | Zheng CHEN, Jingyuan HU, Zhigang ZHAO, Jiangwei SHEN, Xuelei XIA, Fuxing WEI. Thermal characteristics study and optimization of air-cooling structures for dual-system battery packs [J]. Energy Storage Science and Technology, 2025, 14(9): 3463-3475. |
| [2] | Tuo DENG, Haiping ZHOU, Yu LIU, Chang LIU, Zikai LI, Mengqiang WU. Research progress in the preparation of silicon-carbons anode by chemical vapor deposition [J]. Energy Storage Science and Technology, 2025, 14(9): 3354-3372. |
| [3] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
| [4] | Wei WANG, Huishi LIANG, Miangang LI, Kui ZHOU, Wei WANG, Ziyao WANG, Zinan SHI. Method for monitoring irreversible lithium plating in lithium batteries using transfer learning [J]. Energy Storage Science and Technology, 2025, 14(7): 2698-2706. |
| [5] | Zheng CHEN, Gongdong DUO, Jiangwei SHEN, Shiquan SHEN, Yu LIU, Fuxing WEI. State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM [J]. Energy Storage Science and Technology, 2025, 14(6): 2476-2487. |
| [6] | Jingjing RUAN, Xiangkun WU, Yonghui LI, Chongchong ZHAO, Shenshen LI, Tongfei WANG, Shengjie LIANG, Guihong GAO. Preparation and performance studies of low-cost graphite thick dry electrodes [J]. Energy Storage Science and Technology, 2025, 14(6): 2248-2255. |
| [7] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
| [8] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
| [9] | Xiaolan WU, Pengjie MA, Zhifeng BAI, Chenglong LIU, Guifang GUO, Jinhua ZHANG. A kind of intelligent PID double-layer active balancing control method for lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(3): 1150-1159. |
| [10] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
| [11] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
| [12] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
| [13] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
| [14] | Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 755-769. |
| [15] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||