Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4207-4225.doi: 10.19799/j.cnki.2095-4239.2024.0982
Previous Articles Next Articles
Qiangfu SUN1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2()
Received:
2024-10-21
Online:
2024-11-28
Published:
2024-11-27
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2024 to Sep. 30, 2024)[J]. Energy Storage Science and Technology, 2024, 13(11): 4207-4225.
1 | LEE K E, KIM Y, KIM J S, et al. Comparison study of a thermal-driven microstructure in a high-Ni cathode for lithium-ion batteries: Critical calcination temperature for polycrystalline and single-crystalline design[J]. ACS Applied Materials & Interfaces, 2024, 16(18): 23150-23159. DOI: 10.1021/acsami.4c00514. |
2 | YANG T H, ZHANG K, ZUO Y X, et al. Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries[J]. Nature Sustainability, 2024, 7: 1204-1214. DOI: 10.1038/s41893-024-01402-x. |
3 | ADAMO J B, MANTHIRAM A. Understanding the effects of AlandMndoping on theH2-H3phase transition in high-nickel layered oxide cathodes[J]. Chemistry of Materials, 2024, 36(12): 6226-6236. DOI: 10.1021/acs.chemmater.4c01033. |
4 | BI Z H, YI Z L, ZHANG A P, et al. A surface-to-bulk tuning deep delithiation strategy for 5C fast-charging 4.6 V LiCoO2[J]. Energy & Environmental Science, 2024, 17(15): 5706-5718. DOI: 10. 1039/D4EE01674B. |
5 | TIAN Y N, LI Y Y, SHEN H S, et al. Regulation of interface ion transport by electron ionic conductor construction toward high-voltage and high-rate LiNi0.5Co0.2Mn0.3O2 cathodes in lithium ion battery[J]. Advanced Science, 2024, 11(30): e2402380. DOI: 10.1002/advs.202402380. |
6 | ZHANG Y J, UGATA Y, CAMPÉON B L, et al. Unlocking electrode performance of disordered rocksalt oxides through structural defect engineering and surface stabilization with concentrated electrolyte[J]. Advanced Energy Materials, 2024, 14(23): 2304074. DOI: 10.1002/aenm.202304074. |
7 | HUANG Y M, DONG Y H, YANG Y, et al. Integrated rocksalt–polyanion cathodes with excess lithium and stabilized cycling[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01615-6. |
8 | YAN Z L, YI S, WANG Z, et al. Atomic-level regulation of SiC4 units enable high Li+ dynamics and long-life micro-size SiCx anodes[J]. Advanced Energy Materials, 2024: 2400598. DOI: 10.1002/aenm.202400598. |
9 | GUPTA A, BADAM R, MANTRIPRAGADA B S, et al. Ultra-durability and reversible capacity of silicon anodes with crosslinked poly-BIAN binder in lithium-ion secondary batteries for sturdy performance[J]. Advanced Sustainable Systems, 2024: 2400263. DOI: 10.1002/adsu.202400263. |
10 | BAI M, TANG X Y, ZHANG M, et al. An in situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries[J]. Nature Communications, 2024, 15(1): 5375. DOI: 10.1038/s41467-024-49713-z. |
11 | CAO L, CHU M J, LI Y, et al. In situ-constructed multifunctional composite anode with ultralong-life toward advanced lithium-metal batteries[J]. Advanced Materials, 2024: 2406034. DOI: 10.1002/adma.202406034. |
12 | ZHANG S Q, LI R H, DENG T, et al. Oscillatory solvation chemistry for a 500 Wh kg-1 Li-metal pouch cell[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01621-8. |
13 | SCHÖNER S, SCHMIDT D, CHEN X C, et al. Chemical prelithiated3Dlithiophilic /-phobic interlayer enables long-term Li plating/stripping[J]. ACS Nano, 2024, 18(27): 17924-17938. DOI: 10.1021/acsnano.4c04507. |
14 | GAO J C, YAN X R, GU X Y, et al. The alkynyl π bond of sp-C enhanced rapid, reversible Li-C coupling to accelerate reaction kinetics of lithium ions[J]. Journal of the American Chemical Society, 2024, 146(39): 27030-27039. DOI: 10.1021/jacs.4c08920. |
15 | MA B C, LI R H, ZHU H T, et al. Stable oxyhalide-nitride fast ionic conductors for all-solid-state Li metal batteries[J]. Advanced Materials, 2024, 36(30): 2402324. DOI: 10.1002/adma. 202402324. |
16 | ROM C L, YOX P, CARDOZA A M, et al. Expanding the phase space for halide-based solid electrolytes: Li-Mg-Zr-Cl spinels[J]. Chemistry of Materials, 2024, 36(15): 7283-7291. DOI: 10. 1021/acs.chemmater.4c01160. |
17 | SHEN L, LI J L, KONG W J, et al. Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024: 2408571. DOI: 10.1002/adfm.202408571. |
18 | YE Y, GENG J Z, ZUO D X, et al. High-voltage long-cycling all-solid-state lithium batteries with high-valent-element-doped halide electrolytes[J]. ACS Nano, 2024, 18(28): 18368-18378. DOI: 10.1021/acsnano.4c02678. |
19 | FENG G, MA Q Y, LUO D, et al. Designing cooperative ion transport pathway in ultra-thin solid-state electrolytes toward practical lithium metal batteries[J]. Angewandte Chemie (International Ed), 2024: e202413306. DOI: 10.1002/anie. 202413306. |
20 | FENG J W, WANG J Y, GU Q, et al. 1µm-thick robust gel polymer electrolyte with excellent interfacial stability for high-performance Li metal batteries[J]. Advanced Functional Materials, 2024: 2412287. DOI: 10.1002/adfm.202412287. |
21 | ZHANG Y X, YU X H, LI X X, et al. LLZTO crosslinks form a highly stretchable self-healing network for fast healable all-solid lithium metal batteries[J]. Chemical Engineering Journal, 2024, 497: 154397. DOI: 10.1016/j.cej.2024.154397. |
22 | GAO H J, CHEN Y F, TENG T, et al. Interface engineering via manipulating solvation chemistry for liquid lithium-ion batteries Operated≥100 ℃[J]. Angewandte Chemie (International Ed), 2024, 63(43): e202410982. DOI: 10.1002/anie.202410982. |
23 | LI J X, LI C Y, YAO Y T, et al. In situ polymerized flame-retardant crosslinked quasi solid-state electrolytes for high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2024: 2402362. DOI: 10.1002/aenm.202402362. |
24 | KO S, MATSUOKA A, CHEN W T, et al. Multifunctional cyclic phosphoramidate solvent for safe lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(7): 3628-3635. DOI: 10.1021/acsenergylett.4c01579. |
25 | KO Y, BAE J, CHEN G, et al. Topological considerations in electrolyte additives for passivating silicon anodes with hybrid solid-electrolyte interphases[J]. ACS Energy Letters, 2024, 9(7): 3448-3455. DOI: 10.1021/acsenergylett.4c01331. |
26 | XIA Z Y, ZHOU K, LIN X Y, et al. Rationally designing electrolyte additives for highly improving cyclability of LiNi0.5Mn1.5O4/Graphite cells[J]. Journal of Energy Chemistry, 2024, 91: 266-275. DOI: 10.1016/j.jechem.2023.11.045. |
27 | LIU X X, LI Y, LIU J D, et al. 570 Wh kg⁻1-grade lithium metal pouch cell with 4.9 V highly Li+ conductive armor-like cathode electrolyte interphase via partially fluorinated electrolyte engineering[J]. Advanced Materials, 2024, 36(24): 2401505. DOI: 10.1002/adma.202401505. |
28 | ZENG X Y, GAO X, ZHOU P Q, et al. Eliminating H2O/HF and regulating interphase with bifunctional tolylene-2, 4-diisocyanate (TDI) additive for long life Li-ion battery[J]. Journal of Energy Chemistry, 2024, 95: 519-528. DOI: 10.1016/j.jechem. 2024. 03.062. |
29 | WU D X, ZHU C L, WANG H P, et al. Mechanically and thermally stable cathode electrolyte interphase enables high-temperature, high-voltage Li||LiCoO2 batteries[J]. Angewandte Chemie (International Ed), 2024, 63(7): e202315608. DOI: 10.1002/anie. 202315608. |
30 | DUAN S H, ZHANG S Q, LI Y, et al. H-transfer mediated self-enhanced interphase for high-voltage lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(7): 3578-3586. DOI: 10.1021/acsenergylett.4c00917. |
31 | WANG Y, DONG S Y, GAO Y F, et al. Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions[J]. Nature Communications, 2024, 15(1): 5408. DOI: 10.1038/s41467-024-49795-9. |
32 | LI A M, WANG Z Y, LEE T, et al. Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01619-2. |
33 | AZMI R, LINDGREN F, STOKES-RODRIGUEZ K, et al. An XPS study of electrolytes for Li-ion batteries in full cell LNMO vs Si/graphite[J]. ACS Applied Materials & Interfaces, 2024, 16(26): 34266-34280. DOI: 10.1021/acsami.4c01891. |
34 | LIU Y K, YU T, XU S, et al. Constructing an oxyhalide interface for 4.8 V-tolerant high-nickel cathodes in all-solid-state lithium-ion batteries[J]. Angewandte Chemie (International Ed), 2024, 63(33): e202403617. DOI: 10.1002/anie.202403617. |
35 | LIN C X, LIU Y, SU H, et al. Elevating cycle stability and reaction kinetics in Ni-rich cathodes through tailored bulk and interface chemistry for sulfide-based all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024, 34(21): 2311564. DOI: 10. 1002/adfm.202311564. |
36 | LI C, LIN Y, LIU J, et al. Liquid-phase preparation of low-tortuosity composite cathode for high active material content all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(31): 2400985. DOI: 10.1002/aenm.202400985. |
37 | KONG X K, GU R, JIN Z Z, et al. Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics[J]. Nature Communications, 2024, 15(1): 7247. DOI: 10.1038/s41467-024-51123-0. |
38 | KIM S, KIM M, KU M J, et al. Coating robust layers on Ni-rich cathode active materials while suppressing cation mixing for all-solid-state lithium-ion batteries[J]. ACS Nano, 2024, 18(36): 25096-25106. DOI: 10.1021/acsnano.4c06720. |
39 | CHEN K, TANG Y P, ZHANG S Q, et al. Promoted stability and reaction kinetics in Ni-rich cathodes via mechanical fusing multifunctional LiZr2(PO4)3 nanocrystals for high mass loading all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(34): 45459-45472. DOI: 10.1021/acsami. 4c08319. |
40 | CUI L F, ZHANG S, JU J W, et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01596-6 |
41 | VUONG T H L, MASTOI N R, NAM J S, et al. Accelerating ionic–electronic percolation pathways via catecholate coordination of bioinspired-polymer dopamine in all-solid-state composite cathode[J]. Chemical Engineering Journal, 2024, 497: 154534. DOI: 10.1016/j.cej.2024.154534. |
42 | SAQIB K S, EMBLETON T J, CHOI J H, et al. Understanding the carbon additive/sulfide solid electrolyte interface in nickel-rich cathode composites and prioritizing the corresponding interplay between the electrical and ionic conductive networks to enhance all-solid-state-battery rate capability[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 47551-47562. DOI: 10.1021/acsami. 4c08670. |
43 | ASPINALL J, SADA K, GUO H, et al. The impact of magnesium content on lithium-magnesium alloy electrode performance with argyrodite solid electrolyte[J]. Nature Communications, 2024, 15(1): 4511. DOI: 10.1038/s41467-024-48071-0. |
44 | WU D X, PENG J, JIANG Z W, et al. Low-pressure dendrite-free sulfide solid-state battery with 3D LiSi@Li-Phen-Ether anode[J]. Energy Storage Materials, 2024, 72: 103749. DOI: 10.1016/j.ensm.2024.103749. |
45 | LEE K, SAKAMOTO J. Li stripping behavior of anode-free solid-state batteries under intermittent-current discharge conditions[J]. Advanced Energy Materials, 2024, 14(17): 2303571. DOI: 10. 1002/aenm.202303571. |
46 | KIM S Y, BAK S M, JUN K, et al. Revealing dynamic evolution of the anode-electrolyte interphase in all-solid-state batteries with excellent cyclability[J]. Advanced Energy Materials, 2024, 14(27): 2401299. DOI: 10.1002/aenm.202401299. |
47 | XIA Q, YUAN S G, ZHANG Q, et al. Designing the interface layer of solid electrolytes for all-solid-state lithium batteries[J]. Advanced Science, 2024, 11(29): e2401453. DOI: 10.1002/advs. 202401453. |
48 | CHO S, KIM Y, SONG Y, et al. Functional polymer thin films for establishing an effective electrode interface in sulfide-based solid-state batteries[J]. Advanced Functional Materials, 2024, 34(32): 2314710. DOI: 10.1002/adfm.202314710. |
49 | ZHANG C, YU J M, CUI Y Y, et al. An electron-blocking interface for garnet-based quasi-solid-state lithium-metal batteries to improve lifespan[J]. Nature Communications, 2024, 15(1): 5325. DOI: 10.1038/s41467-024-49715-x. |
50 | CAO S L, NING J, HE X, et al. In situ plasma polymerization of self-stabilized polythiophene enables dendrite-free lithium metal anodes with ultra-long cycle life[J]. Small, 2024, 20(31): 2311204. DOI: 10.1002/smll.202311204. |
51 | WANG X Y, XU X Y, HOU W S, et al. Electro-chemo-mechanical design of buffer layer enhances electrochemical performance of all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024: 2402731. DOI: 10.1002/aenm.202402731. |
52 | CHOI J H, KO K, WON S J, et al. Important consideration for interface engineering of carbon-based materials in sulfide all-solid lithium-ion batteries[J]. Energy Storage Materials, 2024, 71: 103653. DOI: 10.1016/j.ensm.2024.103653. |
53 | WANG Z L, SHEN X F, CHEN S J, et al. Large-scale fabrication of stable silicon anode in air for sulfide solid state batteries via ionic-electronic dual conductive binder[J]. Advanced Materials, 2024, 36(32): e2405025. DOI: 10.1002/adma.202405025. |
54 | DU L M, WU Z, PANG B, et al. Dendrite-free Li5.5PS4.5Cl1.5-based all-solid-state lithium battery enabled by grain boundary electronic insulation strategy through in situ polymer encapsulation[J]. ACS Applied Materials & Interfaces, 2024, 16(20): 26288-26298. DOI: 10.1021/acsami.4c04393. |
55 | MEROLA L, SINGH V K, PALMER M, et al. Evaluation of Oxide|Sulfide heteroionic interface stability for developing solid-state batteries with a lithium–metal electrode: The case of LLZO|Li6PS5Cl and LLZO|Li7P3S11[J]. ACS Applied Materials & Interfaces, 2024, 16(40): 54847-54863. DOI: 10.1021/acsami. 4c11597. |
56 | ZHANG Z, FAN W Q, CUI K X, et al. Design of ultrathin asymmetric composite electrolytes for interfacial stable solid-state lithium-metal batteries[J]. ACS Nano, 2024, 18(27): 17890-17900. DOI: 10.1021/acsnano.4c04429. |
57 | ZHANG Z, GOU J R, CUI K X, et al. 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries[J]. Nano-Micro Letters, 2024, 16(1): 181. DOI: 10.1007/s40820-024-01389-2. |
58 | YANG B B, DENG C L, CHEN N, et al. Super-ionic conductor soft filler promotes Li+ transport in integrated cathode-electrolyte for solid-state battery at room temperature[J]. Advanced Materials, 2024, 36(27): e2403078. DOI: 10.1002/adma.202403078. |
59 | LV Q, LI C, LIU Y, et al. In-situ polymerized high-voltage solid-state lithium metal batteries with dual-reinforced stable interfaces[J]. ACS Nano, 2024, 18(34): 23253-23264. DOI: 10.1021/acsnano.4c06057. |
60 | DENG D R, XIONG H J, LUO Y L, et al. Accelerating the rate-determining steps of sulfur conversion reaction for lithium-sulfur batteries working at an ultrawide temperature range[J]. Advanced Materials, 2024: 2406135. DOI: 10.1002/adma.202406135. |
61 | GENG C N, JIANG X, HONG S, et al. Unveiling the role of electric double-layer in sulfur catalysis for batteries[J]. Advanced Materials, 2024, 36(38): e2407741. DOI: 10.1002/adma. 202407741. |
62 | KUNG C Y, CHIANG Y P, CHAN T C, et al. Enhanced performance of lithium–Sulfur cells via novel nano-sized iron-plated sulfur composites[J]. Journal of Power Sources, 2024, 622: 235365. DOI: 10.1016/j.jpowsour.2024.235365. |
63 | LI M, HUANG Z M, LIANG Y H, et al. Accelerating lithium-ion transfer and sulfur conversion via electrolyte engineering for ultra-stable all-solid-state lithium-sulfur batteries[J]. Advanced Functional Materials, 2024: 2413580. DOI: 10.1002/adfm. 202413580. |
64 | LIU H Y, WU Z R, WANG H, et al. Chelating-type binders toward stable cycling and high-safety transition-metal sulfide-based lithium batteries[J]. ACS Energy Letters, 2024, 9(9): 4666-4672. DOI: 10.1021/acsenergylett.4c01907. |
65 | SI M J, JIAN X F, XIE Y, et al. A highly damping, crack-insensitive and self-healable binder for lithium-sulfur battery by tailoring the viscoelastic behavior[J]. Advanced Energy Materials, 2024, 14(14): 2303991. DOI: 10.1002/aenm.202303991. |
66 | ZHU X X, JIANG W, WANG L G, et al. Constructing resilient cross-linked network toward stable all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(17): 2304244. DOI: 10.1002/aenm.202304244. |
67 | WANG L J, YUE K, QIAO Q Q, et al. In situ self-polymerization of thioctic acid enabled interphase engineering towards high-performance lithium–sulfur battery[J]. Advanced Energy Materials, 2024: 2402617. DOI: 10.1002/aenm.202402617. |
68 | ZHANG H W, ZHANG Y D, CAO C, et al. Lithium–sulfur pouch cells with 99% capacity retention for 1000 cycles[J]. Energy & Environmental Science, 2024, 17(19): 7047-7057. DOI: 10.1039/D4EE02149E. |
69 | GAO J, GAO Y, HAO J H, et al. Activating redox kinetics of Li2S via Cu+, I- co-doping toward high-performance all-solid-state lithium sulfide-based batteries[J]. Small, 2024: e2404171. DOI: 10.1002/smll.202404171. |
70 | SHOU Y Q, OU J Y, LI C R, et al. Achieving highly reversible all-solid-state lithium-sulfur batteries through metal–sulfur bonding regulation[J]. ACS Materials Letters, 2024, 6(10): 4545-4554. DOI: 10.1021/acsmaterialslett.4c01416. |
71 | ZHOU J B, HOLEKEVI CHANDRAPPA M L, TAN S, et al. Healable and conductive sulfur iodide for solid-state Li–S batteries[J]. Nature, 2024, 627: 301-305. DOI: 10.1038/s41586-024-07101-z. |
72 | CHANG M Y, JIA J J, LIU G Z, et al. A LiI doped MoS6 composite for room temperature all-solid-state lithium batteries[J]. Chemical Communications, 2024, 60(81): 11580-11583. DOI: 10.1039/D4CC04395B. |
73 | JIN T W, LIANG K Y, YU J H, et al. Enhanced cycling stability of all-solid-state lithium-sulfur battery through nonconductive polar hosts[J]. Nano Letters, 2024, 24(22): 6625-6633. DOI: 10.1021/acs.nanolett.4c01210. |
74 | CHA J, KIM S, NAKATE U T, et al. Highly conductive composite cathode prepared by dry process using Nafion-Li ionomer for sulfide-based all-solid-state lithium batteries[J]. Journal of Power Sources, 2024, 613: 234914. DOI: 10.1016/j.jpowsour. 2024. 234914. |
75 | CHEN B, ZHANG Z, WU C G, et al. Aliphatic polycarbonate-based binders for high-loading cathodes by solvent-free method used in high performance LiFePO4|Li batteries[J]. Materials, 2024, 17(13): 3153. DOI: 10.3390/ma17133153. |
76 | HE Y C, SHI Z P, LIU M C, et al. Optimizing li plating behavior via controlling areal capacity of a cathode for cycling stability on 600 Wh kg-1 Lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(26): 33475-33484. DOI: 10.1021/acsami. 4c04859. |
77 | YANG H, LIU X Y, ZHENG J, et al. Mitigating overcharge in ampere-hour-level anode-free pouch cells by improving pressure uniformity[J]. ACS Energy Letters, 2024, 9(9): 4331-4338. DOI: 10.1021/acsenergylett.4c01569. |
78 | WANG J, FENG X N, YU Y Z, et al. Rapid temperature-responsive thermal regulator for safety management of battery modules[J]. Nature Energy, 2024, 9: 939-946. DOI: 10.1038/s41560-024-01535-5. |
79 | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel electrolyte[J]. Nature, 2024, 629(8010): 86-91. DOI: 10.1038/s41586-024-07343-x. |
80 | YANG S J, YUAN H, YAO N, et al. Intrinsically safe lithium metal batteries enabled by thermo-electrochemical compatible in situ polymerized solid-state electrolytes[J]. Advanced Materials, 2024, 36(35): 2405086. DOI: 10.1002/adma.202405086. |
81 | ZHANG Y X, YAO N, TANG X Y, et al. Upcycling of high-rate Ni-rich cathodes through intrinsic structural features[J]. Advanced Energy Materials, 2024: 2402918. DOI: 10.1002/aenm. 202402918. |
82 | CHA J Y, HONG J, KIM M, et al. Quantification of single crystallinity in single crystal cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(16): 9863-9870. DOI: 10.1039/D4TA00039K. |
83 | DING Y, LI Y, XU R Y, et al. Cross-scale deciphering thermal failure process of Ni-rich layered cathode[J]. Nano Energy, 2024, 126: 109685. DOI: 10.1016/j.nanoen.2024.109685. |
84 | GUO Z Z, CUI Z H, MANTHIRAM A. Reducing the initial capacity loss in high-nickel cathodes with a higher upper cut-off voltage formation cycle protocol[J]. ACS Energy Letters, 2024, 9(7): 3316-3323. DOI: 10.1021/acsenergylett.4c01027. |
85 | MIN J H, SUK W, WONG S C Y, et al. Single-particle electrochemical cycling single-crystal and polycrystalline NMC particles[J]. Advanced Functional Materials, 2024: 2410241. DOI: 10.1002/adfm.202410241. |
86 | RAJU K, WHEATCROFT L, LAI M C, et al. Influence of cathode calendering density on the cycling stability of Li-ion batteries using NMC811 single or poly crystalline particles[J]. Journal of the Electrochemical Society, 2024, 171(8): 080519. DOI: 10.1149/1945-7111/ad6378. |
87 | ARIFIADI A, DEMELASH F, ABKE N M, et al. Assessment of "inverse" cross-talk (anode to cathode) in high-voltage Li/Mn-rich layered oxide Li cells[J]. Advanced Functional Materials, 2024: 2413958. DOI: 10.1002/adfm.202413958. |
88 | CHEN Y, HUANG L, ZHOU D L, et al. Elucidating and minimizing the space-charge layer effect between NCM cathode and Li6PS5Cl for sulfide-based solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304443. DOI: 10. 1002/aenm.202304443. |
89 | LEE H, SEOK J, CHUNG C, et al. Impact of high-temperature storage on capacity fading of Ni-rich cathodes in sulfide-based all-solid-state batteries[J]. Chemical Engineering Journal, 2024, 498: 154903. DOI: 10.1016/j.cej.2024.154903. |
90 | LI F, WU Y C, CHENG X B, et al. Unraveling the interfacial compatibility of ultrahigh nickel cathodes and chloride solid electrolyte for stable all-solid-state lithium batteries[J]. Energy & Environmental Science, 2024, 17(12): 4187-4195. DOI: 10.1039/D4EE01302F. |
91 | SAKKA Y, MATSUMOTO M, YAMASHIGE H, et al. Investigating plastic deformation between silicon and solid electrolyte in all-solid-state batteries using operando X-ray tomography[J]. Journal of the Electrochemical Society, 2024, 171(7): 070536. DOI: 10.1149/1945-7111/ad63d0. |
92 | BI C X, YAO N, LI X Y, et al. Unveiling the reaction mystery between lithium polysulfides and lithium metal anode in lithium–sulfur batteries[J]. Advanced Materials, 2024: 2411197. DOI: 10.1002/adma.202411197. |
93 | FUJITA Y, MÜNCH K, ASAKURA T, et al. Dynamic volume change of Li2S-based active material and the influence of stacking pressure on capacity in all-solid-state batteries[J]. Chemistry of Materials, 2024, 36(15): 7533-7540. DOI: 10.1021/acs.chemmater.4c01514. |
94 | LIU C L, ROTERS F, RAABE D. Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries[J]. Nature Communications, 2024, 15(1): 7970. DOI: 10.1038/s41467-024-52123-w. |
95 | DONG L W, YAN H J, LIU Q X, et al. Quantification of charge transport and mass deprivation in solid electrolyte interphase for kinetically-stable low-temperature lithium-ion batteries[J]. Angewandte Chemie International Edition, 2024: e202411029. DOI: 10.1002/anie.202411029. |
96 | KIM S S, KITCHAEV D A, PATHERIA E S, et al. Cation vacancies enable anion redox in Li cathodes[J]. Journal of the American Chemical Society, 2024, 146(30): 20951-20962. DOI: 10.1021/jacs.4c05769. |
97 | FU K, LI X Y, SUN K, et al. Rational design of thick electrodes in lithium-ion batteries by re-understanding the relationship between thermodynamics and kinetics[J]. Advanced Functional Materials, 2024: 2409623. DOI: 10.1002/adfm.202409623. |
98 | FRIE F, DITLER H, KLICK S, et al. An analysis of calendaric aging over 5 years of Ni-rich 18650-cells with Si/C anodes[J]. ChemElectroChem, 2024, 11(9). DOI: 10.1002/celc.202400020. |
99 | JO S, SEO S, KANG S K, et al. Thermal runaway mechanism in Ni-rich cathode full cells of lithium-ion batteries: The role of multidirectional crosstalk[J]. Advanced Materials, 2024, 36(31): e2402024. DOI: 10.1002/adma.202402024. |
100 | LIMON M S R, AHMAD Z. Heterogeneity in point defect distribution and mobility in solid ion conductors[J]. ACS Applied Materials & Interfaces, 2024, 16(38): 50948-50960. DOI: 10.1021/acsami.4c12128. |
[1] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024 [J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244. |
[2] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[3] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[4] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[5] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[6] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
[7] | Xiang LI, Dezhong LIU, Kai YUAN, Dapeng CHEN. Solid-state electrolyte for low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. |
[8] | Weiqi LIN, Qiaoyu LU, Yuhong CHEN, Linyuan QIU, Yurong JI, Lianyu GUAN, Xiang DING. Advances in cathode materials for low-temperature sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2348-2360. |
[9] | Junfeng HAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. A review of 100 selected recent studies on lithium batteries (April 1, 2024—May 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(7): 2361-2376. |
[10] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[11] | Yi CHEN, Qi QEN, Long ZHAO, Zikun CHEN, Anning WANG. Analysis of China's patent landscape for new energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(6): 2089-2098. |
[12] | Haiou SHI. Fault analysis and application of lithium battery based on deep learning [J]. Energy Storage Science and Technology, 2024, 13(6): 2054-2056. |
[13] | Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. |
[14] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[15] | Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||