Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2141-2150.doi: 10.19799/j.cnki.2095-4239.2024.0375
• Special Issue on Low Temperature Batteries • Previous Articles Next Articles
Xiongwen XU1,2(), Ying MO1(), Wang ZHOU1, Huandong YAO2, Juan HONG2, Hua LEI2, Jian TU2, Jilei LIU1()
Received:
2024-05-06
Revised:
2024-05-29
Online:
2024-07-28
Published:
2024-07-23
Contact:
Jilei LIU
E-mail:xavixu@lifuntech.com;yingmo@hnu.edu.cn;liujilei@hnu.edu.cn
CLC Number:
Xiongwen XU, Ying MO, Wang ZHOU, Huandong YAO, Juan HONG, Hua LEI, Jian TU, Jilei LIU. Effect of hard carbon kinetic properties on low-temperature performance of Na-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2141-2150.
1 | HEUBERGER C F, MAC DOWELL N. Real-world challenges with a rapid transition to 100% renewable power systems[J]. Joule, 2018, 2(3): 367-370. DOI: 10.1016/j.joule.2018.02.002. |
2 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. DOI: 10.1016/j.rser.2016.11.102. |
3 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. DOI: 10.1016/j.est.2019.101047. |
4 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741. |
5 | WANG Y R, CHEN R P, CHEN T, et al. Emerging non-lithium ion batteries[J]. Energy Storage Materials, 2016, 4: 103-129. DOI: 10.1016/j.ensm.2016.04.001. |
6 | DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. DOI: 10.1002/aenm.201701428. |
7 | 曹余良. 钠离子电池机遇与挑战[J]. 储能科学与技术, 2020, 9(3): 757-761. DOI: 10.19799/j.cnki.2095-4239.2020.0026. |
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. DOI: 10.19799/j.cnki.2095-4239.2020.0026. | |
8 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054. | |
9 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. DOI: 10.1021/cr500192f. |
10 | YANG Z, LI G L, SUN J Y, et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 25: 724-730. DOI: 10.1016/j.ensm.2019.09.014. |
11 | WANG H, LIAO X Z, YANG Y, et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565-A570. DOI: 10.1149/2.0011605jes. |
12 | MU L Q, XU S Y, LI Y M, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3 - layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933. DOI: 10.1002/adma.201502449. |
13 | 龙宣有, 王捷, 赵丽娜, 等. 络合剂对铁基普鲁士蓝结构及储钠性能的影响[J]. 储能科学与技术, 2020, 9(1): 57-64. DOI: 10.12028/j.issn.2095-4239.2019.0142. |
LONG X Y, WANG J, ZHAO L N, et al. Effect of chelating agent on crystal structure and sodium storage performance of Fe-based Prussian blue[J]. Energy Storage Science and Technology, 2020, 9(1): 57-64. DOI: 10.12028/j.issn.2095-4239.2019.0142. | |
14 | 杨旸, 严小敏, 杨德志, 等. 普鲁士蓝类钠离子电池正极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 303-308. DOI: 10.3969/j.issn.2095-4239.2016.03.006. |
YANG Y, YAN X M, YANG D Z, et al. Progress in Prussian blue in sodium ion cathode material[J]. Energy Storage Science and Technology, 2016, 5(3): 303-308. DOI: 10.3969/j.issn.2095-4239.2016.03.006. | |
15 | WANG W L, GANG Y, HU Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nature Communications, 2020, 11(1): 980. DOI: 10.1038/s41467-020-14444-4. |
16 | YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248. DOI: 10.1002/adma.201600846. |
17 | PENG F W, YU L, GAO P Y, et al. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes[J]. Journal of Materials Chemistry A, 2019, 7(39): 22248-22256. DOI: 10.1039/C9TA08603J. |
18 | WANG H C, LI C L, AN J, et al. Biomass derived erythrocyte-like hard carbon as anodes for high performing full sodium-ion batteries[J]. Materials Science and Engineering: B, 2022, 286: 116064. DOI: 10.1016/j.mseb.2022.116064. |
19 | KULOVA T, SKUNDIN A, CHEKANNIKOV A, et al. Study of sodium-ion battery based on sodium vanadium phosphate and sodium titanate at low temperatures[J]. International Journal of Electrochemical Science, 2019, 14(2): 1451-1460. DOI: 10.20964/2019.02.10. |
20 | LIN X Y, DU X Q, TSUI P S, et al. Exploring room- and low-temperature performance of hard carbon material in half and full Na-ion batteries[J]. Electrochimica Acta, 2019, 316: 60-68. DOI: 10.1016/j.electacta.2019.05.106. |
21 | PONROUCH A, PALACÍN M R. On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study[J]. Electrochemistry Communications, 2015, 54: 51-54. DOI: 10.1016/j.elecom.2015.03.002. |
22 | WANG Y, LI H G, ZHAI B Y, et al. Highly crystalline Poly(heptazine imide)-Based carbonaceous anodes for ultralong lifespan and low-temperature sodium-Ion batteries[J]. ACS Nano, 2024, 18(4): 3456-3467. DOI: 10.1021/acsnano.3c10779. |
23 | XU X, REN S Y, WU H, et al. Establishing exceptional durability in ultralow-temperature organic-sodium batteries via stabilized multiphase conversions[J]. Journal of the American Chemical Society, 2024, 146(2): 1619-1626. DOI: 10.1021/jacs.3c11931. |
24 | TAO L, SITTISOMWONG P, MA B Y, et al. Tailoring solid-electrolyte interphase and solvation structure for subzero temperature, fast-charging, and long-cycle-life sodium-ion batteries[J]. Energy Storage Materials, 2023, 55: 826-835. DOI: 10.1016/j.ensm.2022.12.042. |
25 | LIU Y T, LIANG H J, DU M, et al. Ester-based anti-freezing electrolyte achieving ultra-low temperature cycling for sodium-ion batteries[J]. Journal of Materials Science & Technology, 2024, 182: 111-118. DOI: 10.1016/j.jmst.2023.09.040. |
26 | GUI Q Y, LI Y Y, LIU J P. Bendable quasi-solid-state aqueous sodium-ion batteries operated at -30 ℃[J]. Journal of Colloid and Interface Science, 2024, 662: 119-128. DOI: 10.1016/j.jcis.2024.02.001. |
27 | ZHOU X Z, HUANG Y H, WEN B, et al. Regulation of anion-Na+ coordination chemistry in electrolyte solvates for low-temperature sodium-ion batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(5): e2316914121. DOI: 10.1073/pnas.2316914121. |
28 | WANG Y Y, LAN H, DONG S, et al. A high-power rechargeable sodium-ion full battery operating at -40 ℃[J]. Advanced Functional Materials, 2024: 2315498. DOI: 10.1002/adfm.202315498. |
29 | FAN C L, ZHANG R S, LUO X H, et al. Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries[J]. Carbon, 2023, 205: 353-364. DOI: 10.1016/j.carbon.2023.01.048. |
30 | DAHN J R, XING W, GAO Y. The "falling cards model" for the structure of microporous carbons[J]. Carbon, 1997, 35(6): 825-830. DOI: 10.1016/S0008-6223(97)00037-7. |
31 | WANG B, FITZPATRICK J R, BROOKFIELD A, et al. Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon[J]. Nature Communications, 2024, 15: 3013. DOI: 10.1038/s41467-024-45460-3. |
32 | LU Y, ZHAO C Z, HUANG J Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198. DOI: 10.1016/j.joule.2022.05.005. |
33 | MO Y, ZHOU W, WANG K X, et al. Engineering electrode/electrolyte interphase chemistry toward high-rate and long-life potassium ion full-cell[J]. ACS Energy Letters, 2023, 8(2): 995-1002. DOI: 10.1021/acsenergylett.2c02659. |
34 | 江文涌, 杨铠聪, 王功伟, 等. 弛豫时间分布方法的原理与应用[J]. 科学通报, 2023, 68(30): 3899-3912. |
JIANG W Y, YANG K C, WANG G W, et al. The principle and application of relaxation time distribution[J]. Chinese Science Bulletin, 2023, 68(30): 3899-3912. | |
35 | CHU Y, ZHANG J, ZHANG Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023, 35(31): e2212186. DOI: 10.1002/adma.202212186. |
36 | FENG X, LI Y, LI Y, et al. Unlocking the local structure of hard carbon to grasp sodium-ion diffusion behavior for advanced sodium-ion batteries[J]. Energy & Environmental Science, 2024, 17(4): 1387-1396. DOI: 10.1039/D3EE03347C. |
[1] | Weiqi LIN, Qiaoyu LU, Yuhong CHEN, Linyuan QIU, Yurong JI, Lianyu GUAN, Xiang DING. Advances in cathode materials for low-temperature sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2348-2360. |
[2] | Shuping WANG, Xiankun YANG, Changhao LI, Ziqi ZENG, Yifeng CHENG, Jia XIE. Diethyl ethylphosphonate-based flame-retardant wide-temperature-range electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2161-2170. |
[3] | Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495. |
[4] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. |
[5] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[6] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[7] | ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng. Technology feasibility and economic analysis of Na-ion battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. |
[8] | Dongdong ZHANG, Hua WEN, Hongwei OUYANG. Research on low-temperature pulse heating of a battery based on an electrochemical-thermal coupled model [J]. Energy Storage Science and Technology, 2022, 11(12): 3957-3964. |
[9] | Fei LIU, Peiwen ZHAO, Jingxiang ZHAO, Xianwei SUN, Miaomiao LI, Jinghao WANG, Yanxin YIN, Zuoqiang DAI, Lili ZHENG. Research progress of hard carbon anode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3497-3509. |
[10] | Fanfeng LIU, Cheng CHEN, Zhiyuan ZHU, Weikang ZHANG, Zhengzhong LYU. The influence of N/P ratio on the performance of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1325-1329. |
[11] | Lin ZHOU, Yang YANG, Yongsheng HU. Failure mechanism of alloy electrodes: Volume change? decomposition of electrolyte? [J]. Energy Storage Science and Technology, 2021, 10(3): 813-820. |
[12] | Chenlu YU, Xiaohua TIAN, han ZHENG, Zhejuan ZHANG, Zhuo SUN, Xianqing PIAO. Research progress in high stability of silicon/hard carbon anodes for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 128-136. |
[13] | ZHAO Xin, KE Dandan, JI Liqiang, HU Feng, CAI Ying. Crystallographic and electrochemical hydrogen storage properties of Sm substitute Nd for La0.5Nd0.35-xSmxMg0.15Ni3.5 alloys [J]. Energy Storage Science and Technology, 2020, 9(4): 1066-1073. |
[14] | WANG Chao, XIANG XIAO, ZHONG Guobin, WANG Pei, LIU Liming, ZHAO Yabin, SHI Zhiqiang. Water chestnut-based hard carbon prepared by hydrothermal-carbonization method as anode for lithium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 818-825. |
[15] | RONG Xiaohui, LU Yaxiang, QI Xingguo, ZHOU Quan, KONG Weihe, TANG Kun, CHEN Liquan, HU Yongsheng. Na-ion batteries: From fundamental research to engineering exploration [J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||