Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2820-2832.doi: 10.19799/j.cnki.2095-4239.2025.0016
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Zijing ZHANG(), Beibei YUAN(
), Hong LI, Ying GAO
Received:
2025-01-06
Revised:
2025-02-14
Online:
2025-07-28
Published:
2025-07-11
Contact:
Beibei YUAN
E-mail:zhangzijing@gotion.com.cn;yuanbeibei@gotion.com.cn
CLC Number:
Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832.
[1] | LEI S Y, SUN W, YANG Y. Comprehensive technology for recycling and regenerating materials from spent lithium iron phosphate battery[J]. Environmental Science & Technology, 2024, 58(8): 3609-3628. DOI: 10.1021/acs.est.3c08585. |
[2] | BANDINI G, CAPOSCIUTTI G, MARRACCI M, et al. Characterization of lithium-batteries for high power applications[J]. Journal of Energy Storage, 2022, 50: 104607. DOI: 10.1016/j.est.2022.104607. |
[3] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
[4] | ZHOU Z Z, LI M Y, ZHOU X D, et al. Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery[J]. Applied Energy, 2023, 349: 121690. DOI: 10.1016/j.apenergy.2023.121690. |
[5] | 李存璞, 唐晓霞, 魏子栋. 锂离子电池的热失控与预防[J]. 科技导报, 2024, 42(12): 178-192. DOI: 10.3981/j.issn.1000-7857.2024.03. 01161. |
LI C P, TANG X X, WEI Z D. Thermal runaway and prevention of lithium-ion batteries[J]. Science & Technology Review, 2024, 42(12): 178-192. DOI: 10.3981/j.issn.1000-7857.2024.03.01161. | |
[6] | WANG Z, ZHU L, LIU J W, et al. Gas sensing technology for the detection and early warning of battery thermal runaway: A review[J]. Energy & Fuels, 2022, 36(12): 6038-6057. DOI: 10.1021/acs.energyfuels.2c01121. |
[7] | 崔潇丹, 丛晓民, 赵林双. 锂离子电池热失控气体及燃爆危险性研究进展[J]. 电池, 2021, 51(4): 407-411. DOI: 10.19535/j.1001-1579. 2021.04.020. |
CUI X D, CONG X M, ZHAO L S. Research progress in thermal runaway gases and explosion hazards of Li-ion battery[J]. Battery Bimonthly, 2021, 51(4): 407-411. DOI: 10.19535/j.1001-1579. 2021.04.020. | |
[8] | 贺丹, 胡雄雄, 崔豪. 锂离子电池热失控消防技术研究进展[J]. 湖南电力, 2024, 44(3): 25-33. |
HE D, HU X X, CUI H. Research progress on safety performance improvement of lithium-ion batteries[J]. Hunan Electric Power, 2024, 44(3): 25-33. | |
[9] | KONG D P, LYU H P, PING P, et al. A review of early warning methods of thermal runaway of lithium ion batteries[J]. Journal of Energy Storage, 2023, 64: 107073. DOI: 10.1016/j.est.2023. 107073. |
[10] | CUI Y, SHI D, WANG Z, et al. Thermal runaway early warning and risk estimation based on gas production characteristics of different types of lithium-ion batteries[J]. Batteries, 2023, 9(9): 438. DOI: 10.3390/batteries9090438. |
[11] | SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. DOI: 10.1016/j.jpowsour.2018.10.014. |
[12] | LI Y X, JIANG L H, ZHANG N J, et al. Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring[J]. Journal of Energy Chemistry, 2024, 92: 74-86. DOI: 10.1016/j.jechem.2023.12.049. |
[13] | GULSOY B, CHEN H, BRIGGS C, et al. Real-time simultaneous monitoring of internal temperature and gas pressure in cylindrical cells during thermal runaway[J]. Journal of Power Sources, 2024, 617: 235147. DOI: 10.1016/j.jpowsour.2024.235147. |
[14] | MEI W X, LIU Z, WANG C D, et al. operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14: 5251. DOI: 10.1038/s41467-023-40995-3. |
[15] | LI K J, CHEN L, HAN X B, et al. Early warning for thermal runaway in lithium-ion batteries during various charging rates: Insights from expansion force analysis[J]. Journal of Cleaner Production, 2024, 457: 142422. DOI: 10.1016/j.jclepro.2024.142422. |
[16] | LIN C J, MAO J B, ZHANG X T, et al. A study of expansion force propagation characteristics and early warning feasibility for the thermal diffusion process of lithium-ion battery modules[J]. Journal of Energy Storage, 2024, 98: 113076. DOI: 10.1016/j.est. 2024.113076. |
[17] | LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231. DOI: 10.1016/j.jpowsour.2017.10.085. |
[18] | ZHANG Y J, WANG H W, LI W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: 100031. DOI: 10.1016/j.etran. 2019.100031. |
[19] | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. DOI: 10.1016/j.psep.2020.07.028. |
[20] | SHEN H J, WANG H W, LI M H, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12(7): 1603. DOI: 10. 3390/electronics12071603. |
[21] | STURK D, ROSELL L, BLOMQVIST P, et al. Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61. DOI: 10.3390/batteries5030061. |
[22] | 陈达, 郝朝龙, 刘添添, 等. 锂离子电池热失控气体拉曼光谱分析方法研究[J]. 中国激光, 2022, 49(23): 2311001. |
CHEN D, HAO C L, LIU T T, et al. Raman spectrum analysis method of thermal runaway gas from lithium-ion batteries[J]. Chinese Journal of Lasers, 2022, 49(23): 2311001. | |
[23] | ZHANG Q S, LIU T T, HAO C L, et al. In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery[J]. Journal of Energy Storage, 2022, 56: 105905. DOI: 10.1016/j.est.2022.105905. |
[24] | 张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825. DOI: 10.13336/j.1003-6520.hve.20211850. |
ZHANG Q S, QU Y R, HAO C L, et al. In-situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825. DOI: 10.13336/j.1003-6520.hve.20211850. | |
[25] | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. DOI: 10.1016/j.joule.2020.05.016. |
[26] | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004. |
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004. | |
[27] | 杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832. |
YANG M J, YANG A J, YE Y J, et al. Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832. | |
[28] | 卫寿平, 孙杰, 李吉刚, 等. 锂离子电池热失控气体产物检测及分析技术研究进展[J]. 储能科学与技术, 2024, 13(11): 4155-4176. DOI: 10.19799/j.cnki.2095-4239.2024.0537. |
WEI S P, SUN J, LI J G, et al. Research progress on detection and analysis of thermal runaway gas products from lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 4155-4176. DOI: 10.19799/j.cnki.2095-4239.2024.0537. | |
[29] | FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222. DOI: 10.1016/j.jpowsour.2014.09.039. |
[30] | 郭东亮, 刘洋, 肖鹏, 等. 储能电站用锂离子电池热失控早期预警参数研究[J]. 消防科学与技术, 2020, 39(8): 1156-1159. |
GUO D L, LIU Y, XIAO P, et al. Research on early warning parameters of thermal runaway of lithium ion battery for energy storage power station[J]. Fire Science and Technology, 2020, 39(8): 1156-1159. | |
[31] | WANG X X, LI Q T, ZHOU X Y, et al. Monitoring thermal runaway of lithium-ion batteries by means of gas sensors[J]. Sensors and Actuators B: Chemical, 2024, 411: 135703. DOI: 10.1016/j.snb. 2024.135703. |
[1] | Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674. |
[2] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
[3] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
[4] | Jiahui LIU, Weixiang BIAN, Dawei LI. In situ measurement and analysis of the electromechanical coupling performance of composite graphite electrodes in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2240-2247. |
[5] | Chunling WU, Liding WANG, Yong LU, Limin GENG, Hao CHEN, Jinhao MENG. Lithium-ion batteries SOH estimation based on gaussian processed regression optimized by egret swarm optimization [J]. Energy Storage Science and Technology, 2025, 14(6): 2498-2511. |
[6] | Gongrui WANG, Anping ZHANG, Xuanxuan REN, Mingzhe YANG, Yuning HAN, Zhongshuai WU. High-voltage lithium cobalt oxide cathode: Key challenges, modification strategies and future prospectives [J]. Energy Storage Science and Technology, 2025, 14(6): 2278-2319. |
[7] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[8] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[9] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[10] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[11] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[12] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[13] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[14] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
[15] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||