Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2698-2706.doi: 10.19799/j.cnki.2095-4239.2025.0049
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Wei WANG1(), Huishi LIANG2(
), Miangang LI2, Kui ZHOU2, Wei WANG2, Ziyao WANG2, Zinan SHI2
Received:
2025-01-14
Revised:
2025-02-01
Online:
2025-07-28
Published:
2025-07-11
Contact:
Huishi LIANG
E-mail:wang-w22@tsinghua.org.cn;lianghuishi@tsinghua-eiri.org
CLC Number:
Wei WANG, Huishi LIANG, Miangang LI, Kui ZHOU, Wei WANG, Ziyao WANG, Zinan SHI. Method for monitoring irreversible lithium plating in lithium batteries using transfer learning[J]. Energy Storage Science and Technology, 2025, 14(7): 2698-2706.
Table 3
Experimental results"
电池编号 | 温度 | 充电倍率 | 放电倍率 | 循环老化圈数 | 容量保持率 | 常温容量保持率 |
---|---|---|---|---|---|---|
1 | 25 ℃ | 2C | 1C | 1000 | 72.99% | 94.10% |
2 | 25 ℃ | 2C | 1C | 1000 | 85.92% | 97.29% |
3 | 25 ℃ | 2C | 1C | 1000 | 85.12% | 96.92% |
4 | 35 ℃ | 2C | 1C | 1000 | 82.52% | 94.28% |
5 | 35 ℃ | 2C | 1C | 1000 | 83.82% | 94.75% |
6 | 35 ℃ | 2C | 1C | 1000 | 83.34% | 92.31% |
7 | -11 ℃ | 0.2C | 0.1C | 83 | 53.41% | 73.12% |
8 | -11 ℃ | 0.2C | 0.1C | 178 | 33.22% | 65.83% |
9 | -11 ℃ | 0.2C | 0.1C | 182 | 38.75% | 72.52% |
10 | -16 ℃ | 0.1C | 0.05C | 67 | 54.38% | 63.98% |
11 | -16 ℃ | 0.1C | 0.05C | 76 | 60.65% | 88.64% |
12 | -16 ℃ | 0.1C | 0.05C | 68 | 59.46% | 84.10% |
[1] | 樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述[J]. 储能科学与技术, 2019, 8(6): 1040-1049. DOI: 10.12028/j.issn.2095-4239.2019.0115. |
FAN Y P, YAN L Q, JIAN D C, et al. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. DOI: 10.12028/j.issn.2095-4239.2019.0115. | |
[2] | LIN X K, KHOSRAVINIA K, HU X S, et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953. DOI: 10.1016/j.pecs.2021.100953. |
[3] | STEIGER J, KRAMER D, MÖNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. DOI: 10.1016/j.electacta.2014.05.120. |
[4] | CHENG J H, ASSEGIE A A, HUANG C J, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7761-7766. DOI: 10.1021/acs.jpcc.7b01414. |
[5] | BOMMIER C, CHANG W, LU Y F, et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells[J]. Cell Reports Physical Science, 2020, 1(4): 100035. DOI: 10.1016/j.xcrp.2020.100035. |
[6] | JUNG M J, BAKTIYAR A, LEE Y N, et al. Experimental analysis for fast lithium plating detection in voltage relaxation profile of lithium-ion batteries[C]//IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. October 16-19, 2023, Singapore, Singapore. IEEE, 2023: 1-6. DOI: 10.1109/IECON 51785.2023.10311689. |
[7] | VENNAM G, TANIM T R, TODD J T, et al. Advancing Li-plating detection: Motivating a multi-signal correlation approach[J]. Journal of Energy Storage, 2024, 98: 112869. DOI: 10.1016/j.est. 2024.112869. |
[8] | CHEN Y X, TORRES-CASTRO L, CHEN K H, et al. Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis[J]. Journal of Power Sources, 2022, 539: 231601. DOI: 10.1016/j.jpowsour.2022. 231601. |
[9] | BURNS J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): A959-A964. DOI: 10.1149/2.0621506jes. |
[10] | RANGARAJAN S P, BARSUKOV Y, MUKHERJEE P P. In operando signature and quantification of lithium plating[J]. Journal of Materials Chemistry A, 2019, 7(36): 20683-20695. DOI: 10.1039/C9TA07314K. |
[11] | 董鹏, 张剑波, 王震坡. 基于电化学阻抗谱的锂离子电池析锂检测方法[J]. 汽车安全与节能学报, 2021, 12(4): 570-579. DOI: 10.3969/j.issn.1674-8484.2021.04.016. |
DONG P, ZHANG J B, WANG Z P. Lithium plating identification based on electrochemical impedance spectra of lithium ion batteries[J]. Journal of Automotive Safety and Energy, 2021, 12(4): 570-579. DOI: 10.3969/j.issn.1674-8484.2021.04.016. | |
[12] | SUN J L, LYU K, WANG R Y, et al. A multistage constant current charging optimization control strategy based on lithium plating fast detection[J]. Journal of Energy Storage, 2025, 109: 115189. DOI: 10.1016/j.est.2024.115189. |
[13] | CHEN B R, KUNZ M R, TANIM T R, et al. A machine learning framework for early detection of lithium plating combining multiple physics-based electrochemical signatures[J]. Cell Reports Physical Science, 2021, 2(3): 100352. DOI: 10.1016/j.xcrp.2021. 100352. |
[14] | CHEN B R, WALKER C M, KIM S, et al. Battery aging mode identification across NMC compositions and designs using machine learning[J]. Joule, 2022, 6(12): 2776-2793. DOI: 10. 1016/j.joule.2022.10.016. |
[15] | TIAN Y, LIN C, LI H L, et al. Deep neural network-driven in situ detection and quantification of lithium plating on anodes in commercial lithium-ion batteries[J]. EcoMat, 2023, 5(1): e12280. DOI: 10.1002/eom2.12280. |
[16] | WANG H, SONG Y J, SUN X, et al. Onboard in situ warning and detection of Li plating for fast-charging batteries with deep learning[J]. Energy Storage Materials, 2024, 71: 103585. DOI: 10.1016/j.ensm.2024.103585. |
[17] | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. DOI: 10.1149/1.2221597. |
[18] | 李超. 基于电化学-热耦合模型的析锂特性研究[D]. 镇江: 江苏大学, 2022. DOI: 10.27170/d.cnki.gjsuu.2022.000308. |
LI C. Study on lithium plating characteristics based on electrochemical-thermal coupling model[D]. Zhenjiang: Jiangsu University, 2022. DOI: 10.27170/d.cnki.gjsuu.2022.000308. | |
[19] | KEIL J, JOSSEN A. Electrochemical modeling of linear and nonlinear aging of lithium-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(11): 110535. DOI: 10.1149/1945-7111/aba44f. |
[20] | 李义函, 卢世刚, 王晶, 等. 磷酸铁锂锂离子电池低温不可逆析锂及其对电池性能衰减的影响[J]. 储能科学与技术, 2024, 13(10): 3656-3665. DOI: 10.19799/j.cnki.2095-4239.2024.0285. |
LI Y H, LU S G, WANG J, et al. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(10): 3656-3665. DOI: 10.19799/j.cnki.2095-4239.2024.0285. | |
[21] | GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[EB/OL]. 2014: 1409.7495. https://arxiv.org/abs/1409.7495v2. |
[22] | HE Z H, YANG B, CHEN C X, et al. CLDA: An adversarial unsupervised domain adaptation method with classifier-level adaptation[J]. Multimedia Tools and Applications, 2020, 79(45): 33973-33991. DOI: 10.1007/s11042-020-08877-8. |
[1] | Zheng CHEN, Gongdong DUO, Jiangwei SHEN, Shiquan SHEN, Yu LIU, Fuxing WEI. State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM [J]. Energy Storage Science and Technology, 2025, 14(6): 2476-2487. |
[2] | Jingjing RUAN, Xiangkun WU, Yonghui LI, Chongchong ZHAO, Shenshen LI, Tongfei WANG, Shengjie LIANG, Guihong GAO. Preparation and performance studies of low-cost graphite thick dry electrodes [J]. Energy Storage Science and Technology, 2025, 14(6): 2248-2255. |
[3] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
[4] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[5] | Xiaolan WU, Pengjie MA, Zhifeng BAI, Chenglong LIU, Guifang GUO, Jinhua ZHANG. A kind of intelligent PID double-layer active balancing control method for lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(3): 1150-1159. |
[6] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
[7] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[8] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[9] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
[10] | Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 755-769. |
[11] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[12] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. |
[13] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[14] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[15] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||