储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 652-668.doi: 10.19799/j.cnki.2095-4239.2023.0568
宋元明1,2(), 刘亚杰1,2, 金光1, 周星1,3(), 黄旭程1,2
收稿日期:
2023-08-23
修回日期:
2023-08-29
出版日期:
2024-02-28
发布日期:
2024-03-01
通讯作者:
周星
E-mail:ysong@nudt.edu.cn;395877464@qq.com
作者简介:
宋元明(1997—),男,博士研究生,研究方向为储能系统优化与综合集成,E-mail:ysong@nudt.edu.cn;
基金资助:
Yuanming SONG1,2(), Yajie LIU1,2, Guang JIN1, Xing ZHOU1,3(), Xucheng HUANG1,2
Received:
2023-08-23
Revised:
2023-08-29
Online:
2024-02-28
Published:
2024-03-01
Contact:
Xing ZHOU
E-mail:ysong@nudt.edu.cn;395877464@qq.com
摘要:
锂离子电池/超级电容器混合储能系统因其良好的性能、较低的成本和较强的通用性,已成为应用最为广泛的混合储能系统。能量管理技术是混合储能系统的核心技术之一,也是当前主要的研究热点。为了系统地对混合储能系统能量管理方法进行综述,本文首先对锂离子电池/超级电容器混合储能系统的拓扑结构、能量管理架构以及功率分配控制进行了介绍;而后,本文将现有的混合储能系统能量管理方法分为基于经验、基于优化、基于工况模式识别和基于机器学习5大类并进行了详细的对比分析,重点针对规律性工况与随机性工况讨论了各类能量管理方法的效能,并分析了各类方法的鲁棒性与计算复杂度;最后,本文对现有的能量管理方法进行了总结,并对该领域未来的研究方向和发展趋势进行了展望。综合分析表明,提高对随机性负载未来工况的预测精度、建立更加精准的混合储能系统模型并通过云端协同进一步提升能量管理方法的实时性将是未来混合储能系统能量管理研究的重点。
中图分类号:
宋元明, 刘亚杰, 金光, 周星, 黄旭程. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668.
Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(2): 652-668.
表1
主流的储能系统性能参数"
储能类型 | 功率密度/(W/kg) | 能量密度/(Wh/kg) | 日自放电率/% | 响应时间 | 效率/% | 日历寿命/a | 循环寿命/次 |
---|---|---|---|---|---|---|---|
压缩空气[ | — | 30~60 | 0 | 数秒至数分钟 | 40~70 | 20~40 | — |
飞轮[ | 400~1600 | 5~130 | 20~100 | 数毫秒至数秒 | 80~90 | 15~20 | 104~107 |
超级电容器[ | 3000~50000 | 5~20 | 2~40 | 数毫秒 | 85~98 | 5~12 | 105~106 |
铅酸电池[ | 20~200 | 30~50 | 0.1~1 | 数毫秒 | 78~85 | 5~10 | 500~2000 |
锂离子电池[ | 250~450 | 130~250 | 0.1~0.3 | 数毫秒 | 80~95 | 5~10 | 1000~3000 |
钠离子电池[ | 100~120 | 100~150 | 0.1~0.2 | 数毫秒 | 80~90 | 1~5 | 1000~1200 |
液流电池[ | — | 30~50 | 0~1 | 数毫秒至数秒 | 70~85 | 10~20 | >104 |
燃料电池[ | 3000~5400W/L | 500~3000 | 0.5~2 | 数秒至数分钟 | 20~66 | 5~30 | 103~104 |
1 | ATAWI I E, AL-SHETWI A Q, MAGABLEH A M, et al. Recent advances in hybrid energy storage system integrated renewable power generation: Configuration, control, applications, and future directions[J]. Batteries, 2022, 9(1): 29. |
2 | CHONG L, WONG Y W, RAJKUMAR R K, et al. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System[J]. Journal of Power Sources, 2016, 331: 553-565. |
3 | CHONG L, WONG Y W, RAJKUMAR R K, et al. An adaptive learning control strategy for standalone PV system with battery-supercapacitor hybrid energy storage system[J]. Journal of Power Sources, 2018, 394: 35-49. |
4 | 苏浩, 张建成, 王宁, 等. 基于分层优化的大容量混合储能系统能量管理策略[J]. 高电压技术, 2018, 44(4): 1177-1186. |
SU H, ZHANG J C, WANG N, et al. Energy management strategy of large-scale hybrid energy storage system based on layered optimization[J]. High Voltage Engineering, 2018, 44(4): 1177-1186. | |
5 | 张野, 郭力, 贾宏杰, 等. 基于平滑控制的混合储能系统能量管理方法[J]. 电力系统自动化, 2012, 36(16): 36-41. |
ZHANG Y, GUO L, JIA H J, et al. An energy management method of hybrid energy storage system based on smoothing control[J]. Automation of Electric Power Systems, 2012, 36(16): 36-41. | |
6 | LI W, JOOS G. A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications[C]//2008 IEEE Power Electronics Specialists Conference. June 15-19, 2008, Rhodes, Greece. IEEE, 2008: 1762-1768. |
7 | CHENG L, ZHANG F H, LIU S, et al. Configuration method of hybrid energy storage system for high power density in more electric aircraft[J]. Journal of Power Sources, 2020, 445: 227322. |
8 | WANG P, ZHANG F H, CHEN Q H. Bi- level optimal configuration of hybrid energy storage for wind farms considering battery life[J]. Journal of Physics: Conference Series, 2022, 2247(1): 012005. |
9 | SONG Z Y, LI J Q, HAN X B, et al. Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles[J]. Applied Energy, 2014, 135: 212-224. |
10 | 王丽, 刘畅, 陈宗海. 电动汽车用电池-超级电容混合储能系统拓扑结构与功率分配策略研究综述[C]//第二十届中国系统仿真技术及其应用学术年会论文集(20th CCSSTA 2019). 乌鲁木齐, 2019: 514-519. |
11 | ZHU T, WILLS R G A, LOT R, et al. Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting[J]. Applied Energy, 2021, 292: 116932. |
12 | SONG Z Y, HOU J, XU S B, et al. The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses[J]. Energy, 2017, 135: 91-100. |
13 | XIAO G, CHEN Q H, XIAO P, et al. Multiobjective optimization for a Li-ion battery and supercapacitor hybrid energy storage electric vehicle[J]. Energies, 2022, 15(8): 2821. |
14 | KACHHWAHA A, RASHED G I, GARG A R, et al. Design and performance analysis of hybrid battery and ultracapacitor energy storage system for electrical vehicle active power management[J]. Sustainability, 2022, 14(2): 776. |
15 | YANG J B, XU X H, PENG Y Q, et al. Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway[J]. Energy, 2019, 183: 1123-1135. |
16 | 刘辉, 孙振海, 房金萍, 等. 城轨交通地面混合储能系统控制策略综述[J]. 数码设计(上), 2020, 9(1): 105-107. |
LIU H, SUN Z H, FANG J P, et al. Summary of control strategies for ground hybrid energy storage system of urban rail transit[J]. Peak Data Science, 2020, 9(1): 105-107. | |
17 | WANG X, LUO Y B, QIN B, et al. Power dynamic allocation strategy for urban rail hybrid energy storage system based on iterative learning control[J]. Energy, 2022, 245: 123263. |
18 | HOU J, SONG Z Y, PARK H, et al. Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems[J]. Applied Energy, 2018, 230: 62-77. |
19 | CHEN H, ZHANG Z H, GUAN C, et al. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship[J]. Energy, 2020, 197: 117285. |
20 | ELSAYED A T, MOHAMMED O A. A comparative study on the optimal combination of hybrid energy storage system for ship power systems[C]//2015 IEEE Electric Ship Technologies Symposium (ESTS). June 21-24, 2015, Old Town Alexandria, VA, USA. IEEE, 2015: 140-144. |
21 | XU L N, GUERRERO J M, LASHAB A, et al. A review of DC shipboard microgrids—Part I: Power architectures, energy storage, and power converters[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5155-5172. |
22 | 付立军, 刘鲁锋, 王刚, 等. 我国舰船中压直流综合电力系统研究进展[J]. 中国舰船研究, 2016, 11(1): 72-79. |
FU L J, LIU L F, WANG G, et al. The research progress of the medium voltage DC integrated power system in China[J]. Chinese Journal of Ship Research, 2016, 11(1): 72-79. | |
23 | HU X S, DENG X C, WANG F, et al. A review of second-life lithium-ion batteries for stationary energy storage applications[J]. Proceedings of the IEEE, 2022, 110(6): 735-753. |
24 | REN G Z, MA G Q, CONG N. Review of electrical energy storage system for vehicular applications[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 225-236. |
25 | XIONG R, CHEN H, WANG C, et al. Towards a smarter hybrid energy storage system based on battery and ultracapacitor - A critical review on topology and energy management[J]. Journal of Cleaner Production, 2018, 202: 1228-1240. |
26 | WANG Y J, WANG L, LI M C, et al. A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems[J]. eTransportation, 2020, 4: 100064. |
27 | KOUCHACHVILI L, YAÏCI W, ENTCHEV E. Hybrid battery/supercapacitor energy storage system for the electric vehicles[J]. Journal of Power Sources, 2018, 374: 237-248. |
28 | XU H, SHEN M H. The control of lithium-ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: A review[J]. International Journal of Energy Research, 2021, 45(15): 20524-20544. |
29 | SANKARKUMAR R S, NATARAJAN R. Energy management techniques and topologies suitable for hybrid energy storage system powered electric vehicles: An overview[J]. International Transactions on Electrical Energy Systems, 2021, 31(4): doi: 10.1002/2050-7038.12819. |
30 | 王富强, 王汉斌, 武明鑫, 等. 压缩空气储能技术与发展[J]. 水力发电, 2022, 48(11): 10-15. |
WANG F Q, WANG H B, WU M X, et al. Compressed air energy storage technology and development[J]. Water Power, 2022, 48(11): 10-15. | |
31 | 李红, 储江伟, 孙术发, 等. 车载电磁耦合飞轮储能系统的特性[J]. 储能科学与技术, 2021, 10(5): 1687-1693. |
LI H, CHU J W, SUN S F, et al. Characteristics of vehicle-mounted electromagnetic coupling flywheel energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1687-1693. | |
32 | 齐洪峰. 飞轮储能与轨道交通系统技术融合发展现状[J]. 电源技术, 2022, 46(2): 137-140. |
QI H F. Progress of technology integration between flywheel energy storage and rail transportation system[J]. Chinese Journal of Power Sources, 2022, 46(2): 137-140. | |
33 | 张兴, 阮鹏, 张柳丽, 等. 飞轮储能装置性能测试[J]. 储能科学与技术, 2021, 10(5): 1674-1678. |
ZHANG X, RUAN P, ZHANG L L, et al. Performance test of flywheel energy storage device[J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. | |
34 | 肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9): 1-12. |
XIAO M, SU Y P, DU B X. Research progress of supercapacitors[J]. Electronic Components and Materials, 2019, 38(9): 1-12. | |
35 | 石文明, 刘意华, 吕湘连, 等. 超级电容器材料及应用研究进展[J]. 微纳电子技术, 2022, 59(11): 1105-1118. |
SHI W M, LIU Y H, LÜ X L, et al. Research progress of supercapacitor materials and applications[J]. Micronanoelectronic Technology, 2022, 59(11): 1105-1118. | |
36 | YANAMANDRA K, PINISETTY D, DAOUD A, et al. Recycling of Li-ion and lead acid batteries: A review[J]. Journal of the Indian Institute of Science, 2022, 102(1): 281-295. |
37 | 李磊, 许燕. 锂离子动力电池发展现状及趋势分析[J]. 中国锰业, 2020, 38(5): 9-13, 21. |
LI L, XU Y. An analysis of the development status and trend of lithium ion power battery[J]. China's Manganese Industry, 2020, 38(5): 9-13, 21. | |
38 | 乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
QIAO L B, ZHANG X H, SUN X Z, et al. Advances in battery-supercapacitor hybrid energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. | |
39 | 易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369. |
YI H M, LYU Z Q, ZHANG H M, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. | |
40 | 党荣彬, 陆雅翔, 容晓晖, 等. 钠离子电池关键材料研究及工程化探索进展[J]. 科学通报, 2022, 67(30): 3546-3564. |
DANG R B, LU Y X, RONG X H, et al. Research progress of key materials and engineering exploration for Na-ion batteries[J]. Chinese Science Bulletin, 2022, 67(30): 3546-3564. | |
41 | 刘庆华, 张赛, 蒋明哲, 等. 低成本液流电池储能技术研究[J]. 储能科学与技术, 2019, 8(S1): 60-64. |
LIU Q H, ZHANG S, JIANG M Z, et al. Study on the low-cost flow battery technologies for energy storage[J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. | |
42 | 姚祯, 王锐, 阳雪, 等. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
YAO Z, WANG R, YANG X, et al. Current situations and prospects of zinc-iron flow battery[J]. Energy Storage Science and Technology, 2022, 11(1): 78-88. | |
43 | 陈继忠, 王坤洋, 李又宁, 等. 一种液流电池系统的自放电特性评价方法: CN106935890A[P]. 2017-07-07. |
CHEN J Z, WANG K Y, LI Y N, et al. Self-discharging characteristic evaluation method for redox flow cell system: CN106935890A[P]. 2017-07-07. | |
44 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
GAO W T, LEI Y J, ZHANG X, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
45 | PODDER A K, CHAKRABORTY O, ISLAM S, et al. Control strategies of different hybrid energy storage systems for electric vehicles applications[J]. IEEE Access, 2021, 9: 51865-51895. |
46 | KRISHNA P S P, N S J, KEDLAYA A. Energy management strategies for hybrid energy storage system in electric vehicles: A review[C]//2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). July 2-4, 2020, Bangalore, India. IEEE, 2020: 1-7. |
47 | ROY P, LIAO Y, HE J B. Economic dispatch for grid-connected wind power with battery-supercapacitor hybrid energy storage system[J]. IEEE Transactions on Industry Applications, 2023, 59(1): 1118-1128. |
48 | HUO W Y, ZHU J H, ZHOU J. Power distribution control framework for renewable energy architecture with battery-supercapacitor based hybrid energy storage systems[J]. Energies, 2021, 14(24): 8312. |
49 | SHU L, RUI L. Power allocation control method for hybrid energy storage system of lithium ion battery and supercapacitor[C]//2020 Chinese Control and Decision Conference (CCDC). August 22-24, 2020, Hefei, China. IEEE, 2020: 1346-1350. |
50 | LI G D, YANG Z, LI B, et al. Power allocation smoothing strategy for hybrid energy storage system based on Markov decision process[J]. Applied Energy, 2019, 241: 152-163. |
51 | SONG Z Y, HOU J, HOFMANN H, et al. Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles[J]. Energy, 2017, 122: 601-612. |
52 | AZEEM M K, ARMGHAN H, HUMA Z, et al. Multistage adaptive nonlinear control of battery-ultracapacitor based plugin hybrid electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101813. |
53 | YANG B, WANG J B, ZHANG X S, et al. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control[J]. Journal of Power Sources, 2020, 448: 227444. |
54 | SONG Z Y, HOFMANN H, LI J Q, et al. A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles[J]. Journal of Power Sources, 2015, 274: 400-411. |
55 | HUSSAIN S, ALI M U, PARK G S, et al. A real-time Bi-adaptive controller-based energy management system for battery-supercapacitor hybrid electric vehicles[J]. Energies, 2019, 12(24): 4662. |
56 | MALLON K, ASSADIAN F. A study of control methodologies for the trade-off between battery aging and energy consumption on electric vehicles with hybrid energy storage systems[J]. Energies, 2022, 15(2): 600. |
57 | HOU J, SONG Z Y. A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity[J]. Applied Energy, 2020, 257: 113900. |
58 | RUAN J G, WALKER P D, ZHANG N, et al. An investigation of hybrid energy storage system in multi-speed electric vehicle[J]. Energy, 2017, 140: 291-306. |
59 | SONG Z Y, LI J Q, HOU J, et al. The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study[J]. Energy, 2018, 154: 433-441. |
60 | HU J, LIU D, DU C Q, et al. Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition[J]. Energy, 2020, 198: 117298. |
61 | NGUYEN H L T, NGUYỄN B H, VO-DUY T, et al. A comparative study of adaptive filtering strategies for hybrid energy storage systems in electric vehicles[J]. Energies, 2021, 14(12): 3373. |
62 | LI J Q, FU Z J, JIN X. Rule based energy management strategy for a battery/ultra-capacitor hybrid energy storage system optimized by pseudospectral method[J]. Energy Procedia, 2017, 105: 2705-2711. |
63 | 王峰, 罗玉涛. 基于电池寿命的复合储能系统参数优化及能量管理[J]. 汽车安全与节能学报, 2019, 10(2): 211-218. |
WANG F, LUO Y T. Parameter optimization and energy management of hybrid energy storage system based on battery life[J]. Journal of Automotive Safety and Energy, 2019, 10(2): 211-218. | |
64 | CHEN H, XIONG R, LIN C, et al. Model predictive control based real-time energy management for hybrid energy storage system[J]. CSEE Journal of Power and Energy Systems, 2020, 7(4): 862-874. |
65 | ZHANG S, XIONG R. Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming[J]. Applied Energy, 2015, 155: 68-78. |
66 | ZHANG S, XIONG R, SUN F C. Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system[J]. Applied Energy, 2017, 185: 1654-1662. |
67 | XIONG R, DUAN Y Z, CAO J Y, et al. Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle[J]. Applied Energy, 2018, 217: 153-165. |
68 | XIONG R, CAO J Y, YU Q Q. Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]. Applied Energy, 2018, 211: 538-548. |
69 | LI S Q, HE H W, ZHAO P F. Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective[J]. Energy, 2021, 230: 120890. |
70 | WANG Y J, ZHANG X, LIU C, et al. Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter[J]. Journal of Power Sources, 2018, 389: 93-105. |
71 | JYOTHEESWARA REDDY K, NATARAJAN S. Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications - A review[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17387-17408. |
72 | TIE S F, TAN C W. A review of energy sources and energy management system in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 82-102. |
73 | SHCHUR I, BILETSKYI Y. Passivity-based control of hybrid energy storage system with common battery and modular multilever DC-DC converter-based supercapacitor packs[C]//2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE). September 15-18, 2019, Lviv-Slavske, Ukraine. IEEE, 2020: 1-6. |
74 | KAMA V, K B S. A new control strategy for hybrid energy storage system with a bidirectional DC-DC converter for EV application[J]. IJIREEICE, 2017, 5(2): 32-37. |
75 | NASERI F, FARJAH E, GHANBARI T. An efficient regenerative braking system based on battery/supercapacitor for electric, hybrid, and plug-In hybrid electric vehicles with BLDC motor[J]. IEEE Transactions on Vehicular Technology, 2017, 66(5): 3724-3738. |
76 | CAO J, EMADI A. A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 122-132. |
77 | XIANG C L, WANG Y Z, HU S D, et al. A new topology and control strategy for a hybrid battery-ultracapacitor energy storage system[J]. Energies, 2014, 7(5): 2874-2896. |
78 | 吴志程, 朱俊杰, 许金, 等. 电磁发射用"锂电池-超级电容"混合储能技术研究综述[J]. 电机与控制应用, 2021, 48(3): 1-6. |
WU Z C, ZHU J J, XU J, et al. Review of "lithium battery-supercapacitor" hybrid energy storage technology for electromagnetic launch[J]. Electric Machines & Control Application, 2021, 48(3): 1-6. | |
79 | DOUGAL R A, LIU S, WHITE R E. Power and life extension of battery-ultracapacitor hybrids[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(1): 120-131. |
80 | CERICOLA D, RUCH P W, KÖTZ R, et al. Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications[J]. Journal of Power Sources, 2010, 195(9): 2731-2736. |
81 | LIU H M, WANG Z X, CHENG J, et al. Improvement on the cold cranking capacity of commercial vehicle by using supercapacitor and lead-acid battery hybrid[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1097-1105. |
82 | WANG H M, WANG Q F, HU B Z. A review of developments in energy storage systems for hybrid excavators[J]. Automation in Construction, 2017, 80: 1-10. |
83 | BARCELLONA S, PIEGARI L, VILLA A. Passive hybrid energy storage system for electric vehicles at very low temperatures[J]. Journal of Energy Storage, 2019, 25: 100833. |
84 | 王宇. 超级电容与蓄电池混合储能系统的能量管理与控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
WANG Y. Study on energy management and control of A supercapacitor and battery hybrid energy storage system[D]. Harbin: Harbin Institute of Technology, 2016. | |
85 | HAN J Y, ZHANG J C, YAN L. Capacity configuration of the hybrid energy storage system based on improved quantum genetic algorithm[C]//International Conference on Renewable Power Generation (RPG 2015). Beijing, China. Institution of Engineering and Technology, 2015. |
86 | LIU C,WANG Y,CHEN Z.Long cycle life oriented battery/ultracapacitor hybrid energy storage system in electric vehicles using multi-objective optimization[C].11th International Conference on Applied Energy,VSsteras,2019. |
87 | CEZAR B, ONEA A. A rule-based energy management strategy for parallel hybrid vehicles with supercapacitors[C]//15th International Conference on System Theory, Control and Computing. October 14-16, 2011, Sinaia, Romania. IEEE, 2011: 1-6. |
88 | 美)达维德·安德里亚(Davide Andrea著, 李建林[等]译. 大规模锂离子电池管理系统[M]. 北京: 机械工业出版社, 2016. |
89 | 宋子由. 客车用锂电池/超级电容复合储能系统的优化与控制[D]. 北京: 清华大学, 2016. |
SONG Z Y. The optimization and control of Li-battery/supercapacitor hybrid energy storage system for bus[D]. Beijing: Tsinghua University, 2016. | |
90 | 王红艳, 张文倩. 改进型逻辑门限混合储能系统控制策略研究[J]. 智慧电力, 2020, 48(5): 41-46. |
WANG H Y, ZHANG W Q. Control strategy of improved logic threshold hybrid energy storage system[J]. Smart Power, 2020, 48(5): 41-46. | |
91 | 安小宇, 李元丰, 孙建彬, 等. 基于模糊逻辑的电动汽车双源混合储能系统能量管理策略[J]. 电力系统保护与控制, 2021, 49(16): 135-142. |
AN X Y, LI Y F, SUN J B, et al. Energy management strategy of a dual-source hybrid energy storage system for electric vehicles based on fuzzy logic[J]. Power System Protection and Control, 2021, 49(16): 135-142. | |
92 | LI J W, ZOU W T, YANG Q Q, et al. Size optimization and power allocation of a hybrid energy storage system for frequency service[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108165. |
93 | SONG Z Y, HOFMANN H, LI J Q, et al. Energy management strategies comparison for electric vehicles with hybrid energy storage system[J]. Applied Energy, 2014, 134: 321-331. |
94 | PENG J K, HE H W, XIONG R. Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programming[J]. Applied Energy, 2017, 185: 1633-1643. |
95 | HOU C, OUYANG M G, XU L F, et al. Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles[J]. Applied Energy, 2014, 115: 174-189. |
96 | ZHOU F, XIAO F, CHANG C, et al. Adaptive model predictive control-based energy management for semi-active hybrid energy storage systems on electric vehicles[J]. Energies, 2017, 10(7): 1063. |
97 | BORHAN H, VAHIDI A, PHILLIPS A M, et al. MPC-based energy management of a power-split hybrid electric vehicle[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3): 593-603. |
98 | UTHAICHANA K, BENGEA S, DECARLO R, et al. Hybrid model predictive control tracking of a sawtooth driving profile for an HEV[C]//2008 American Control Conference. June 11-13, 2008, Seattle, WA, USA. IEEE, 2008: 967-974. |
99 | LIU C, WANG Y J, WANG L, et al. Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization[J]. Journal of Power Sources, 2019, 438: 227024. |
100 | LANGARI R, WON J S. Intelligent energy management agent for a parallel hybrid vehicle-part I: System architecture and design of the driving situation identification process[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3): 925-934. |
101 | NEUBAUER J, BROOKER A, WOOD E. Sensitivity of plug-in hybrid electric vehicle economics to drive patterns, electric range, energy management, and charge strategies[J]. Journal of Power Sources, 2013, 236: 357-364. |
102 | CHEN Z Y, XIONG R, CAO J Y. Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions[J]. Energy, 2016, 96: 197-208. |
103 | R P M, SREELEKSHMI R S, NAIR M G. A neural network based hybrid energy storage system connected to a DC standalone PV system[C]//2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON). May 5-6, 2022, Chennai, India. IEEE, 2022: 1-5. |
104 | RAMOUL J, CHEMALI E, DORN-GOMBA L, et al. A neural network energy management controller applied to a hybrid energy storage system using multi-source inverter[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE). September 23-27, 2018, Portland, OR, USA. IEEE, 2018: 2741-2747. |
105 | SHEN J Y, KHALIGH A. A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 223-231. |
106 | SHEN J Y, KHALIGH A. Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1910-1918. |
107 | MORENO J, ORTUZAR M E, DIXON J W. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 614-623. |
108 | TIRPUDE S. Analysis of a function fitting neural network based control strategy for a hybrid energy storage system applied to electric-vehicles[J]. International Journal of Emerging Trends in Engineering Research, 2020, 8(7): 2955-2962. |
109 | ZHANG Q, WANG L J, LI G, et al. A real-time energy management control strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles[J]. Journal of Energy Storage, 2020, 31: 101721. |
110 | SINGH P, LATHER J S. Accurate power-sharing, voltage regulation, and SOC regulation for LVDC microgrid with hybrid energy storage system using artificial neural network[J]. International Journal of Green Energy, 2020, 17(12): 756-769. |
111 | SINGH P, LATHER J S. Dynamic power management and control for low voltage DC microgrid with hybrid energy storage system using hybrid bat search algorithm and artificial neural network[J]. Journal of Energy Storage, 2020, 32: 101974. |
112 | ZGHEIB R, AL-HADDAD K. Neural network controller to manage the power flow of a hybrid source for electric vehicles[C]//2015 IEEE Vehicle Power and Propulsion Conference (VPPC). October 19-22, 2015, Montreal, QC, Canada. IEEE, 2015: 1-6. |
113 | LIU T, ZOU Y, LIU D X, et al. Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7837-7846. |
114 | XU D Z, CUI Y D, YE J Y, et al. A soft actor-critic-based energy management strategy for electric vehicles with hybrid energy storage systems[J]. Journal of Power Sources, 2022, 524: 231099. |
115 | WANG X, ZHOU J S, QIN B, et al. Coordinated control of wind turbine and hybrid energy storage system based on multi-agent deep reinforcement learning for wind power smoothing[J]. Journal of Energy Storage, 2023, 57: 106297. |
116 | GUO J Q, HE H W, PENG J K, et al. A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles[J]. Energy, 2019, 175: 378-392. |
117 | MALI V, TRIPATHI B. Thermal stability of supercapacitor for hybrid energy storage system in lightweight electric vehicles: Simulation and experiments[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(1): 170-178. |
118 | 江冬冬, 李道飞, 俞小莉. 基于驾驶员需求转矩预测的模型预测控制能量管理[J]. 浙江大学学报(工学版), 2020, 54(7): 1325-1334, 1361. |
JIANG D D, LI D F, YU X L. Model predictive control energy management based on driver demand torque prediction[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(7): 1325-1334, 1361. | |
119 | ZHOU S Y, HU Z J, GU W, et al. Artificial intelligence based smart energy community management: A reinforcement learning approach[J]. CSEE Journal of Power and Energy Systems, 2019, 5(1): 1-10. |
120 | LIU J M, PENG H E. Modeling and control of a power-split hybrid vehicle[J]. IEEE Transactions on Control Systems Technology, 2008, 16(6): 1242-1251. |
121 | XIE S B, HU X S, XIN Z K, et al. Time-efficient stochastic model predictive energy management for a plug-in hybrid electric bus with an adaptive reference state-of-charge advisory[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5671-5682. |
122 | SUN C, HU X S, MOURA S J, et al. Velocity predictors for predictive energy management in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1197-1204. |
123 | ZHOU Q, DU C Q. A two-term energy management strategy of hybrid electric vehicles for power distribution and gear selection with intelligent state-of-charge reference[J]. Journal of Energy Storage, 2021, 42: 103054. |
124 | NGO V, HOFMAN T, STEINBUCH M, et al. Predictive gear shift control for a parallel hybrid electric vehicle[C]//2011 IEEE Vehicle Power and Propulsion Conference. September 6-9, 2011, Chicago, IL, USA. IEEE, 2011: 1-6. |
125 | MOURA S J, FATHY H K, CALLAWAY D S, et al. A stochastic optimal control approach for power management in plug-in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 545-555. |
126 | RIPACCIOLI G, BEMPORAD A, ASSADIAN F, et al. Hybrid modeling, identification, and predictive control: An application to hybrid electric vehicle energy management[C]//MAJUMDAR R, TABUADA P. International Workshop on Hybrid Systems: Computation and Control. Berlin, Heidelberg: Springer, 2009: 321-335. |
127 | YANG X S, KOZIEL S. Computational optimization: An overview[M]//KOZIEL S, YANG X S., Eds. Computational optimization, methods and algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 1-11. |
128 | 高阳, 陈世福, 陆鑫. 强化学习研究综述[J]. 自动化学报, 2004, 30(1): 86-100. |
GAO Y, CHEN S F, LU X. Research on reinforcement learning technology: A review[J]. Acta Automatica Sinica, 2004, 30(1): 86-100. | |
129 | ZHU J H, PAN W X, GU J P. Research on hybrid energy storage configuration in grid wind power scheduling tracking under statistics and frequency decomposition[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(3): 031006. |
130 | ROBAYO M, MUELLER M, SHARKH S, et al. Assessment of supercapacitor performance in a hybrid energy storage system with an EMS based on the discrete wavelet transform[J]. Journal of Energy Storage, 2023, 57: 106200. |
131 | ZHANG Q A, DENG W W. An adaptive energy management system for electric vehicles based on driving cycle identification and wavelet transform[J]. Energies, 2016, 9(5): 341. |
132 | 胡林, 田庆韬, 黄晶, 等. 电动汽车锂离子电池-超级电容混合储能系统能量分配与参数匹配研究综述[J]. 机械工程学报, 2022, 58(16): 224-237. |
HU L, TIAN Q T, HUANG J, et al. Review on energy distribution and parameter matching of lithium-ion battery-super capacitor hybrid energy storage system for electric vehicles[J]. Journal of Mechanical Engineering, 2022, 58(16): 224-237. | |
133 | HU L, ZHOU X Q, ZHANG X, et al. A review on key challenges in intelligent vehicles: Safety and driver-oriented features[J]. IET Intelligent Transport Systems, 2021, 15(9): 1093-1105. |
134 | LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806. |
135 | MALI V, TRIPATHI B. Thermal and economic analysis of hybrid energy storage system based on lithium-ion battery and supercapacitor for electric vehicle application[J]. Clean Technologies and Environmental Policy, 2021, 23(4): 1135-1150. |
136 | LI M C, WANG L, WANG Y J, et al. Sizing optimization and energy management strategy for hybrid energy storage system using multiobjective optimization and random forests[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11421-11430. |
137 | ZHU T, WILLS R G A, LOT R, et al. Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles[J]. Energy, 2021, 221: 119851. |
138 | 王湘, 吴峻. 连发型电磁弹射器混合储能系统及其能源管理策略[J]. 电工技术学报, 2020, 35(19): 4076-4084. |
WANG X, WU J. Hybrid energy storage system of continuous-type electromagnetic catapult and its energy management strategy[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4076-4084. |
[1] | 李校磊, 高健, 周伟东, 李泓. COMSOL Multiphysics在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(2): 546-567. |
[2] | 彭可, 张志成, 胡有章, 张旭辉, 周稼辉, 李彬. 基于有限元的热力耦合场匣钵运动分析与优化[J]. 储能科学与技术, 2024, 13(2): 634-642. |
[3] | 雷旗开, 余胤, 彭鹏, 陈满, 金凯强, 王青松. 隔热材料布局方式对280 Ah磷酸铁锂电池热失控传播抑制效果的影响[J]. 储能科学与技术, 2024, 13(2): 495-502. |
[4] | 李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. |
[5] | 段双明, 张胜利. 基于自适应多层RLS的锂离子电池参数辨识[J]. 储能科学与技术, 2024, 13(2): 712-720. |
[6] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[7] | 唐盼春, 严嵘, 张灿, 孙泽. 堆叠式车载超级电容器热管理方式分析[J]. 储能科学与技术, 2024, 13(2): 483-491. |
[8] | 徐铖杰, 黄玉林, 林中飞雨, 林志铭, 方辰希, 张卫军, 黄志高, 李加新. 纳米硅的砂磨宏量制备及其碳纤维复合负极的储锂性能研究[J]. 储能科学与技术, 2024, 13(1): 1-11. |
[9] | 张怡, 葛筱渔, 李真, 黄云辉. 用于锂电池监测的声学和光学传感技术研究进展[J]. 储能科学与技术, 2024, 13(1): 167-177. |
[10] | 童文欣, 黄中垣, 王睿, 邓司浩, 何伦华, 肖荫果. 基于空间分辨中子衍射方法的锂离子电池电化学反应均匀性研究[J]. 储能科学与技术, 2024, 13(1): 72-81. |
[11] | 廖雅贇, 周峰, 张颖曦, 吕途安, 何阳, 陈晓燕, 霍开富. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. |
[12] | 靳欣, 张建茹, 王其钰, 张锐, 王碧童, 张中洋, 俞海龙, 禹习谦, 李泓. 混合固液锂离子电池的热失控行为研究[J]. 储能科学与技术, 2024, 13(1): 48-56. |
[13] | 肖也, 徐磊, 闫崇, 黄佳琦. 锂电池用参比电极的设计与应用[J]. 储能科学与技术, 2024, 13(1): 82-91. |
[14] | 戴雪娇, 闫婕, 王管, 董浩天, 蒋丹枫, 魏泽威, 孟凡星, 刘松涛, 张海涛. 铌基低温电池关键材料研究进展[J]. 储能科学与技术, 2024, 13(1): 311-324. |
[15] | 杜文, 王君雷, 徐运飞, 李世龙, 王昆. 火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析[J]. 储能科学与技术, 2024, 13(1): 345-357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||