Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (2): 225-236.doi: 10.12028/j.issn.2095-4239.2018.0195
Previous Articles Next Articles
SU Wei1, ZHONG Guobin2, SHEN Jiani3, WANG Chao2, XU Jinlong3, HE Yijun3, MA Zifeng3
Received:
2018-09-23
Revised:
2018-12-08
Online:
2019-03-01
Published:
2019-03-01
CLC Number:
SU Wei, ZHONG Guobin, SHEN Jiani, WANG Chao, XU Jinlong, HE Yijun, MA Zifeng. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 225-236.
[1] WU Chao, ZHU Chunbo, GE Yunwang, et al. A review on fault mechanism and diagnosis approach for Li-ion batteries[J]. Journal of Nanomaterials, 2015, 2015:1-9. [2] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430. [3] LIU Huaqiang, WEI Zhongbao, HE Weidong, et al. Thermal issues about li-ion batteries and recent progress in battery thermal management systems:A review[J]. Energy Conversion and Management, 2017, 150:304-330. [4] 白恺, 李娜, 范茂松, 等. 大容量梯次利用电池储能系统工程技术路线研究[J]. 华北电力技术, 2017(3):39-45. BAI Kai, LI Na, FAN Maosong, et al. Research on the technical roadmap for engineering application of large-scale echelon use battery energy storage system[J]. North China Electric Power, 2017(3):39-45. [5] WEN Jianwu, YU Yan, CHEN Chunhua. A review on lithium-ion batteries safety issues:existing problems and possible solutions[J]. Materials Express, 2012, 2(3):197-212. [6] YAO Lei, WANG Zhenpo, MA Jun. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources, 2015, 293:548-561. [7] LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288. [8] 陈岚, 范永清, 张谦, 等. 基于贝叶斯网络的电池管理系统故障诊断方法[J]. 电源技术, 2016, 40(7):1396-1398. CHEN Lan, FAN Yongqing, ZHANG Qian, et al. Fault diagnosis methods for battery management system based on bayesian network[J]. Chinese Journal of Power Sources, 2016, 40(7):1396-1398. [9] CHEN Wen, CHEN Weitian, SAIF M, et al. Simultaneous fault isolation and estimation of lithium-ion batteries via synthesized design of Luenberger and learning observers[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1):290-298. [10] 张夏枭. 空调系统中传感器故障检测与诊断方法研究[D]. 沈阳:东北大学, 2009. ZHANG Xiaxiao. Approach research of sensor fault detection and diagnosis in HVAC system[D]. Shenyang:Northeastern University, 2009. [11] DEY S, MOHON S, PISU P, et al. Sensor fault detection, isolation, and estimation in lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6):2141-2149. [12] 徐佳宁, 梁栋滨, 魏国, 等. 串联电池组接触电阻故障诊断分析[J]. 电工技术学报, 2017, 32(18):106-112. XU Jianing, LIANG Dongbin, WEI Guo, et al. Series battery pack's contact resistance fault diagnosis analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(18):106-112. [13] OFFER G J, YUFIT V, HOWEY D A, et al. Module design and fault diagnosis in electric vehicle batteries[J]. Journal of Power Sources, 2012, 206:383-392. [14] 欧方明. 锂电池内部微短路控制方法[J]. 船电技术, 2013, 33(4):47-48. OU Fangming. Control method of the microshort-circuit in the Li-ion Battery[J]. Marine Electric & Electronic Engineering, 2013, 33(4):47-48. [15] WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384:107-124. [16] FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267. [17] REN Dongsheng, FENG Xuning, LU Languang, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364:328-340. [18] YUAN Qingfeng, ZHAO Fenggang, WANG Weidong, et al. Overcharge failure investigation of lithium-ion batteries[J]. Electrochimica Acta, 2015, 178:682-688. [19] MALEKI H, HOWARD J N. Effects of overdischarge on performance and thermal stability of a Li-ion cell[J]. Journal of Power Sources, 2006, 160(2):1395-1402. [20] ZHENG Yong, HE Yanbing, QIAN Kun, et al. Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries[J]. RSC Advances, 2016, 6(36):30474-30483. [21] SHU Jie, SHUI Miao, XU Dan, et al. A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16(2):819-824. [22] ZHANG Shengshui. The effect of the charging protocol on the cycle life of a Li-ion battery[J]. Journal of Power Sources, 2006, 161(2):1385-1391. [23] GAO Yang, JIANG Jiuchun, ZHANG Caiping, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356:103-114. [24] ANDRENACCI N, ORTENZI F, PROSINI P P, et al. Ageing effects on batteries of high discharge current rate[C]//EVS 2017-30th International Electric Vehicle Symposium and Exhibition, 2017:Landesmesse Stuttgart GmbH. [25] JOHNSEN B, NØRREGAARD K, VIUM J H. EV Lithium-ion battery lifetime at low temperature[C]//Large Lithium Ion Battery Technology and Application Symposium, 2015:595-601. [26] BUROW D, SERGEEVA K, CALLES S, et al. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J]. Journal of Power Sources, 2016, 307:806-814. [27] LINDGREN J, LUND P D. Effect of extreme temperatures on battery charging and performance of electric vehicles[J]. Journal of Power Sources, 2016, 328:37-45. [28] WU M S, CHIANG P C J. High-rate capability of lithium-ion batteries after storing at elevated temperature[J]. Electrochimica Acta, 2007, 52(11):3719-3725. [29] FENG Xuning, FANG Mou, HE Xiangming, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255(6):294-301. [30] LEVY S C. Safety and reliability considerations for lithium batteries[J]. Journal of Power Sources, 1997, 68(1):75-77. [31] 杨固长, 崔益秀, 周建银. 锂离子单体电池筛选方法的研究[J]. 电池工业, 2009, 14(3):152-154. YANG Guchang, CUI Yixiu, ZHOU Jianyin. Research on the selecting methods for Li-ion cells[J]. Chinese Battery Industry, 2009, 14(3):152-154. [32] 王永琛, 倪江锋, 王海波, 等. 锂离子电池一致性分选方法[J]. 储能科学与技术, 2013, 2(5):522-527. WANG Yongchen, NI Jiangfeng, WANG Haibo, et al. Sorting methods of lithium ion batteries consistency[J]. Energy Storage Science and Technology, 2013, 2(5):522-527. [33] HE Xiangming. A facile consistency screening approach to select cells with better performance consistency for commercial 18650 lithium ion cells[J]. International Journal of Electrochemical Science, 2017, 12(11):10239-10258. [34] ZHENG Yuejiu, OUYANG Minggao, LU Languang, et al. On-line equalization for lithium-ion battery packs based on charging cell voltages:part 1. Equalization based on remaining charging capacity estimation[J]. Journal of Power Sources, 2014, 247:676-686. [35] 李娜, 白恺, 陈豪,等. 磷酸铁锂电池均衡技术综述[J]. 华北电力技术, 2012(2):60-65. LI Na, BAI Kai, CHEN Hao, et al. Summary of equalization for LiFePO4 li-ion batteries[J]. North China Electric Power, 2012(2):60-65. [36] ZHAO Yu, ZHANG Weige, JIANG Jiuchun, et al. Analysis on inconsistency of electric bicycle battery pack[C]//Transportation Electrification Asia-Pacific. IEEE, 2014:1-5. [37] CHEN Zeyu, XIONG Rui, TIAN Jinpeng, et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy, 2016, 184:365-374. [38] YANG Ruixin, XIONG Rui, HE Hongwen, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187:950-959. [39] HE Hongwen, LIU Zhentong, HUA Yin. Adaptive extended Kalman filter based fault detection and isolation for a lithium-ion battery pack[J]. Energy Procedia, 2015, 75:1950-1955. [40] LIU Zhentong, HE Hongwen. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185:2033-2044. [41] OUYANG Minggao, ZHANG Mingxuan, FENG Xuning, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294:272-283. [42] GAO Wenkai, ZHENG Yuejiu, OUYANG Minggao, et al. Micro-short circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2018, doi:10.1109/TIE.2018.2838109. [43] HONG Jichao, WANG Zhenpo, LIU Peng. Big-data-based thermal runaway prognosis of battery systems for electric vehicles[J]. Energies, 2017, 10(7):919. [44] ZHAO Yang LIU Peng, WANG Zhenpo, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207:354-362. [45] WANG Zhenpo, HONG Jichao, LIU Peng, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z -score for electric vehicles[J]. Applied Energy, 2017, 196:289-302 [46] SUN Zhenyu, LIU Peng, WANG Zhenpo. Real-time fault diagnosis method of battery system based on shannon entropy[J]. Energy Procedia, 2017, 105:2354-2359. [47] Gao Z, Cheng S C, Woo W L, et al. Genetic algorithm based back-propagation neural network approach for fault diagnosis in lithium-ion battery system[C]//International Conference on Power Electronics Systems and Applications. IEEE, 2016:1-6. [48] 古昂, 张向文. 基于RBF神经网络的动力电池故障诊断系统研究[J]. 电源技术, 2016, 40(10):1943-1945. GU Ang, ZHANG Xiangwen. Fault diagnosis system for power battery based on RBF neural network[J]. Chinese Journal of Power Sources, 2016, 40(10):1943-1945. [49] 夏飞, 马茜, 张浩, 等. 改进D-S证据理论在电动汽车锂电池故障诊断中的应用[J]. 智能系统学报, 2017, 12(4):526-537. XIA Fei, MA Xi, ZHANG Hao, et al. Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J]. CAAI Transactions on Intelligent Systems, 2017, 12(4):526-537. [50] 刘文杰, 齐国光. 基于模糊理论的电池故障诊断专家系统[J]. 吉林大学学报(信息科学版), 2005, 23(6):670-674. LIU Wenjie, QI Guoguang. Expert system for faults diagnosis of battery based on fuzzy set theory[J]. Journal of Jilin University (Information Science Edition), 2005, 23(6):670-674. [51] FENG Xuning, PAN Yue, HE Xiangming, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18:26-39. [52] KONG Xiandong, ZHENG Yuejiu, OUYANG Minggao, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395:358-368. [53] XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337:1-10. [54] PALACÍN M R, DE GUIBERT A. Batteries:Why do batteries fail?[J]. Science, 2016, 351(6273):1253292. [55] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3):R1-R25. [56] WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224. [57] LIN Xinfan, PEREZ H E, SIEGEL J B, et al. Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5):1745-1755. [58] RICHARDSON R R, IRELAND P T, HOWEY D A. Battery internal temperature estimation by combined impedance and surface temperature measurement[J]. Journal of Power Sources, 2014, 265:254-261. [59] KIM Y, MOHAN S, SIEGEL J B, et al. The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6):2277-2286. [60] DEY S, BIRON Z A, TATIPAMULA S, et al. On-board thermal fault diagnosis of lithium-ion batteries for hybrid electric vehicle application[J]. IFAC Papers-Online, 2015, 48(15):389-394. [61] DEY S, BIRON Z A, TATIPAMULA S, et al. Model-based real-time thermal fault diagnosis of Lithium-ion batteries[J]. Control Engineering Practice, 2016, 56:37-48. [62] SUN Jinlei, WEI Guo, PEI Lei, et al. Online internal temperature estimation for lithium-ion batteries based on Kalman filter[J]. Energies, 2015, 8(5):4400-4415. [63] ZHANG Cheng, LI Kang, DENG Jing. Real-time estimation of battery internal temperature based on a simplified thermoelectric model[J]. Journal of Power Sources, 2016, 302:146-154. [64] DAI Haifeng, ZHU Letao, ZHU Jiangong, et al. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries[J]. Journal of Power Sources, 2015, 293:351-365. [65] MARCICKI J, ONORI S, RIZZONI G. Nonlinear fault detection and isolation for a lithium-ion battery management system[C]//ASME 2010 Dynamic Systems and Control Conference, 2010, 1:607-614. [66] LIU Zhentong, HE Hongwen. Model-based sensor fault diagnosis of a lithium-ion battery in electric vehicles[J]. Energies, 2015, 8(7):6509-6527. [67] EDWARDS C, PATTON R J, SPURGEON S K. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4):541-553. [68] ZHENG Yuejiu, HAN Xuebing, LU Languang, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources, 2013, 223:136-146. [69] KANG Yongzhe, DUAN Bin, SHANG Yunlong, et al. Multi-fault online detection method for series-connected battery packs[C]//Chinese Automation Congress. IEEE, 2017:235-240. [70] LIU Zhentong, AHMED Q, RIZZONI G, et al. Fault detection and isolation for lithium-ion battery system using structural analysis and sequential residual generation[C]//ASME 2014 Dynamic Systems and Control Conference, 2014, 2:V002T36A005. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[5] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[6] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[7] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[8] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[9] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[10] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[11] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[12] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[13] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[14] | Zhuoheng XIE, Ziyang WANG, Gang ZHANG, Zhenning GU, Xiaolong SHI, Bin YAO. Experimental study on fire extinguishing of large-capacity ternary lithium-ion battery by perfluorohexanone and water mist fire extinguishing device [J]. Energy Storage Science and Technology, 2022, 11(2): 652-659. |
[15] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||