Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3373-3388.doi: 10.19799/j.cnki.2095-4239.2025.0150
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiuchun LI1,2(), Yonggang CHANG2, Wei XIE2, Xiaoming LI3, Chengmeng CHEN3(
)
Received:
2025-02-17
Revised:
2025-03-12
Online:
2025-09-28
Published:
2025-09-05
Contact:
Chengmeng CHEN
E-mail:lixiuchun@chinacoal.com;chencm@sxicc.ac.cn
CLC Number:
Xiuchun LI, Yonggang CHANG, Wei XIE, Xiaoming LI, Chengmeng CHEN. Controllable preparation of coal-based carbon anodes for sodium-ion batteries: Research progress and prospects[J]. Energy Storage Science and Technology, 2025, 14(9): 3373-3388.
Fig. 6
(a) Schematic diagram of the preparation process and microcrystalline structure of lignite/sucrose composites[29]; (b) Raman spectra and (c) constant-current charge-discharge curves at 0.03 A/g of hard carbon obtained by carbonization of coal coupled with different ratios of glucose molecules[30]"
Fig. 7
(a) Schematic diagram of the preparation process of N-doping coal-based hard carbon; theoretical simulations of sodium adsorption based on various N-doping structures: (b) N-Q, (c) N-5, and (d) N-6, where the brown spheres are C, the silver spheres are N, and the green spheres are Na[33]"
Fig. 11
(a) Schematic diagram of thermal transformation pathways for activated coal-based hard carbon; (b) BET surface area and closed pore surface area of AC700, CAC1100, CAC1300, CAC1500, and DC1300; (c) Schematic illustration of the pore structure evolution during various thermal treatment processes; (d) The first discharge-charge curves of AC700, CAC1300, and DC1300 at the current density of 0.1 C[48]"
[1] | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. DOI: 10.1039/C6CS00776G. |
[2] | KALAMARAS E, MAROTO-VALER M M, SHAO M H, et al. Solar carbon fuel via photoelectrochemistry[J]. Catalysis Today, 2018, 317: 56-75. DOI: 10.1016/j.cattod.2018.02.045. |
[3] | CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312. DOI: 10.1016/j.pnsc.2008.07.014. |
[4] | SINGH A N, ISLAM M, MEENA A, et al. Unleashing the potential of sodium-ion batteries: Current state and future directions for sustainable energy storage[J]. Advanced Functional Materials, 2023, 33(46): 2304617. DOI: 10.1002/adfm.202304617. |
[5] | HIRSH H S, LI Y X, TAN D H S, et al. Sodium-ion batteries paving the way for grid energy storage[J]. Advanced Energy Materials, 2020, 10(32): 2001274. DOI: 10.1002/aenm.202001274. |
[6] | LI Y D, CHEN X Q, ZENG Z H, et al. Coal-based electrodes for energy storage systems: Development, challenges, and prospects[J]. ACS Applied Energy Materials, 2022, 5(6): 7874-7888. DOI: 10.1021/acsaem.2c01423. |
[7] | 宋文革 曾, 王斌. 低阶煤基炭材料研究进展 [J]. 新型炭材料(中英文): 1-22. |
[8] | PICKEL W, KUS J, FLORES D, et al. Classification of liptinite-ICCP system 1994[J]. International Journal of Coal Geology, 2017, 169: 40-61. DOI: 10.1016/j.coal.2016.11.004. |
[9] | The new inertinite classification (ICCP system 1994)[J]. Fuel, 2001, 80(4): 459-471. DOI: 10.1016/S0016-2361(00)00102-2. |
[10] | INT COMMITTEE COAL ORGANIC P. The new vitrinite classification (ICCP System 1994) [J]. Fuel, 1998, 77(5): 349-58. |
[11] | SHI L, LIU Q Y, GUO X J, et al. Pyrolysis behavior and bonding information of coal—A TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132. DOI: 10.1016/j.fuproc.2012.06.023. |
[12] | 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439. DOI: 10.1360/N032014-00159. |
LIU Z Y. Advancement in coal chemistry: Structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1439. DOI: 10.1360/N032014-00159. | |
[13] | LU H Y, SUN S F, XIAO L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 729-735. DOI: 10.1021/acsaem.8b01784. |
[14] | LI Y M, HU Y S, QI X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197. DOI: 10.1016/j.ensm.2016.07.006. |
[15] | 王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. DOI: 10.11949/0438-1157.20210668. |
WANG B Y, XIA J L, DONG X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750. DOI: 10.11949/0438-1157.20210668. | |
[16] | ZENG H T, KANG W W, XING B L, et al. Microstructure modulation of hard carbon derived from long-flame coal to improve electrochemical sodium storage performances[J]. Fuel Processing Technology, 2025, 267: 108159. DOI: 10.1016/j.fuproc.2024.108159. |
[17] | WANG L B, XU Z K, LIN P, et al. Oxygen-crosslinker effect on the electrochemical characteristics of asphalt-based hard carbon anodes for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 15(7): DOI:10.1002/aenm.202403084. |
[18] | 郭行, 韩纹莉, 董晓玲, 等. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. DOI: 10.11949/0438-1157.20211503. |
GUO H, HAN W L, DONG X L, et al. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806. DOI: 10.11949/0438-1157.20211503. | |
[19] | DONG S, SONG Y L, FANG Y Z, et al. Rapid carbonization of anthracite coal via flash joule heating for sodium ion storage[J]. ACS Applied Energy Materials, 2024, 7(24): 11288-11296. DOI: 10.1021/acsaem.3c02975. |
[20] | LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. DOI: 10.1002/aenm.201800108. |
[21] | DU Y F, SUN G H, LI Y, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. DOI: 10.1016/j.carbon.2021. 03.016. |
[22] | LOU Z J, WANG H, WU D Y, et al. Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage[J]. Fuel, 2022, 310: 122072. DOI: 10.1016/j.fuel.2021.122072. |
[23] | MA R, CHEN Y X, LI Q, et al. Oxygen-driven closing pore formation in coal-based hard carbon for low-voltage rapid sodium storage[J]. Chemical Engineering Journal, 2024, 493: 152389. DOI: 10.1016/j.cej.2024.152389. |
[24] | SU M Y, ZHANG K Y, ANG E H, et al. Structural regulation of coal-derived hard carbon anode for sodium-ion batteries via pre-oxidation[J]. Rare Metals, 2024, 43(6): 2585-2596. DOI: 10.1007/s12598-023-02607-3. |
[25] | ZHANG H M, MING H, ZHANG W F, et al. Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23766-23774. DOI: 10.1021/acsami.7b05687. |
[26] | ZHANG H M, ZHANG W F, MING H, et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 341: 280-288. DOI: 10.1016/j.cej. 2018.02.016. |
[27] | XIE F, XU Z, JENSEN A C S, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Advanced Functional Materials, 2019, 29(24): 1901072. DOI: 10.1002/adfm.201901072. |
[28] | ZHANG H M, ZHANG W F, HUANG F Q. Hard carbon microsphere with expanded graphitic interlayers derived from a highly branched polymer network as ultrahigh performance anode for practical sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61180-61188. DOI: 10.1021/acsami.1c19199. |
[29] | CHEN H, SUN N, ZHU Q Z, et al. Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries[J]. Advanced Science, 2022, 9(20): 2200023. DOI: 10.1002/advs.202200023. |
[30] | ZHOU Z R, WANG Z J, FAN L S. In-situ capture defects through molecule grafting assisted in coal-based hard carbon anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2024, 490: 151428. DOI: 10.1016/j.cej.2024.151428. |
[31] | MA H Z, TANG Y K, TANG B, et al. Enhancing the electrochemical performance of semicoke‐based hard carbon anode through oxidation-crosslinking strategy for low‐cost sodium‐ion batteries [J]. Carbon Energy, 2024, 6(12): 138-150.DOI:10.1002/cey2.584. |
[32] | SONG W J, TANG Y K, LIU J M, et al. Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 946: 169384. DOI: 10.1016/j.jallcom.2023.169384. |
[33] | LI R, YANG B R, HU A J, et al. Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries[J]. Carbon, 2023, 215: 118489. DOI: 10.1016/j.carbon.2023.118489. |
[34] | SUN D, LUO B, WANG H Y, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: 103937. DOI: 10.1016/j.nanoen.2019.103937. |
[35] | CHEN L, BAI L L, YEO J, et al. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27499-27507. DOI: 10.1021/acsami. 0c04469. |
[36] | DENG W T, CAO Y J, YUAN G M, et al. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47728-47739. DOI: 10.1021/acsami.1c15884. |
[37] | XU T Y, QIU X, ZHANG X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chemical Engineering Journal, 2023, 452: 139514. DOI: 10.1016/j.cej. 2022.139514. |
[38] | XIA J L, YAN D, GUO L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials, 2020, 32(21): 2000447. DOI: 10.1002/adma.202000447. |
[39] | ZHAO H Q, YE J Q, SONG W, et al. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 6991-7000. DOI: 10.1021/acsami.9b11627. |
[40] | SUN F, WANG H, QU Z B, et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms[J]. Advanced Energy Materials, 2021, 11(1): 2002981. DOI: 10.1002/aenm.202002981. |
[41] | CHEN H, SUN N, WANG Y X, et al. Microcrystalline engineering of anthracite-based carbon via salt-assisted ball milling for enhanced sodium storage performance[J]. Small, 2025, 21(8): 2406497. DOI: 10.1002/smll.202406497. |
[42] | QIAN W Y, ZHOU X Y, LIU X Y, et al. Breakage of the dense structure of coal precursors increases the plateau capacity of hard carbon for sodium storage[J]. Chemical Science, 2025, 16(1): 104-112. DOI: 10.1039/D4SC06549B. |
[43] | CHEN H, SUN N, WANG Y X, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541. DOI: 10.1016/j.ensm. 2023.01.042. |
[44] | WANG H H, NIU H Z, SHU K W, et al. Regulating the "core-shell" microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode[J]. Journal of Materials Science & Technology, 2025, 209: 161-170. DOI: 10.1016/j.jmst.2024.05.009. |
[45] | HE H N, HE J, YU H B, et al. Dual-interfering chemistry for soft-hard carbon translation toward fast and durable sodium storage[J]. Advanced Energy Materials, 2023, 13(16): 2300357. DOI: 10.1002/aenm.202300357. |
[46] | AHMADPOUR A, DO D D. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon, 1996, 34(4): 471-479. DOI: 10.1016/0008-6223(95)00204-9. |
[47] | ILLÁN-GÓMEZ M J, GARCÍA-GARCÍA A, SALINAS-MARTÍNEZ DE LECEA C, et al. Activated carbons from Spanish coals. 2. chemical activation[J]. Energy & Fuels, 1996, 10(5): 1108-1114. DOI: 10.1021/ef950195+. |
[48] | WANG K F, SUN F, WANG H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials, 2022, 32(34): 2203725. DOI: 10.1002/adfm.202203725. |
[49] | GAO S S, TANG Y K, WANG L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263. DOI: 10.1021/acssuschemeng.7b03421. |
[50] | WANG J, CUI Y L, GU Y, et al. Coal-based modified carbon for high performance sodium-ion battery[J]. Solid State Ionics, 2021, 368: 115701. DOI: 10.1016/j.ssi.2021.115701. |
[51] | WANG K F, QIAN J, SUN F, et al. In-situ catalytic conversion of coal pyrolysis gas to nanoporous carbon rods and superior sodium ion storage performance[J]. Fuel, 2020, 281: 118782. DOI: 10.1016/j.fuel.2020.118782. |
[52] | WEI S W, DENG X Y, LI W, et al. Recyclable molten-salt-assisted synthesis of N-doped porous carbon nanosheets from coal tar pitch for high performance sodium batteries[J]. Chemical Engineering Journal, 2023, 455: 140540. DOI: 10.1016/j.cej. 2022.140540. |
[53] | ZHAO G X, XU T Q, ZHAO Y M, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103282. DOI: 10.1016/j.ensm.2024.103282. |
[54] | XIAO N, WEI Y B, LI H Q, et al. Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction[J]. Carbon, 2020, 162: 431-437. DOI: 10.1016/j.carbon.2020.02.015. |
[1] | Jingyu XIANG, Wei ZHONG, Shijie CHENG, Jia XIE. Boosting sodium battery energy storage: New research progress of pre-sodiation technology [J]. Energy Storage Science and Technology, 2025, 14(8): 3051-3064. |
[2] | Bin WANG, Jinkai LIU, Xiaoxia JIANG, Ning BAI, Yuanwei LU. Optimization of flexibile peak shaving system of coal-fired unit aided by molten salt heat storage based on economic analysis [J]. Energy Storage Science and Technology, 2025, 14(7): 2729-2737. |
[3] | Yu LI, Dandan LI, Fei XIE, bin TANG, Xiaohui RONG, Qinqin LIANG, Yongsheng HU. Recent progress of cathode presodiation strategies in sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1748-1757. |
[4] | Yangfeng WANG, Jiaao HOU, Zichen ZHU, Cong SUO, Shuandi HOU. Research progress on hard-carbon closed-pore structure of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 555-569. |
[5] | Yonggang CHANG, Jinhao ZHANG, Wei XIE, Xiuchun LI, Yilin WANG, Chengmeng CHEN. Capacity enhancement strategy of hard carbon anode for sodium-ion battery: A review [J]. Energy Storage Science and Technology, 2025, 14(2): 544-554. |
[6] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[7] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[8] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[9] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[10] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[11] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[12] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[13] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[14] | Ruirui ZHAO, Yanqiu PENG, Xuejun LAI, Zhilong WU, Jie GAO, Wencheng XU, Lina WANG, Qin DING, Yongjin FANG, Yuliang CAO. Capacity fading mechanism of Na4Fe3(PO4)2P2O7 based sodium-ion battery during calendar aging [J]. Energy Storage Science and Technology, 2024, 13(11): 4124-4132. |
[15] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||