1 |
缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678.
|
|
MIAO P, YAO Z, JOHN L, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678.
|
2 |
刘文婷. 我国锂电产业发展新特征及安全问题研究[J]. 智能网联汽车, 2022(6): 86-92.
|
|
LIU W T. Research on new characteristics and safety problems of lithium battery industry in China[J]. Intelligent Connected Vehicles, 2022(6): 86-92.
|
3 |
王莉, 何向明, 高剑, 等. 锂离子电池正极材料生产技术的发展[J]. 储能科学与技术, 2018, 7(5): 888-896.
|
|
WANG L, HE X M, GAO J, et al. Manufacturing method for cathode materials of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 888-896.
|
4 |
CHEN N, LI B Y, GUI W H, et al. Research on temperature field change trend of the sintering process for lithium-ion battery cathode materials[J]. IFAC-PapersOnLine, 2018, 51(21): 307-312.
|
5 |
FERRER S, MEZQUITA A, AGUILELLA V M, et al. Beyond the energy balance: Exergy analysis of an industrial roller kiln firing porcelain tiles[J]. Applied Thermal Engineering, 2019, 150: 1002-1015.
|
6 |
CHEN N, LI B Y, LUO B, et al. Event-triggered optimal control for temperature field of roller kiln based on adaptive dynamic programming[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 2805-2817.
|
7 |
袁茂圣, 万鹏, 张锐, 等. 锂电池材料烧结辊道窑辊棒静力学分析[J]. 工业炉, 2019, 41(3): 52-55.
|
|
YUAN M S, WAN P, ZHANG R, et al. Statics anslysis of roller of sintering roller kiln for lithium battery[J]. Industrial Furnace, 2019, 41(3): 52-55.
|
8 |
ZHAI P T, CHEN L G, YIN Y M, et al. Interactions between mullite saggar refractories and Li-ion battery cathode materials during calcination[J]. Journal of the European Ceramic Society, 2018, 38(4): 2145-2151.
|
9 |
XIANG K, LI S J, LI Y B, et al. Interactions of Li2O volatilized from ternary lithium-ion battery cathode materials with mullite saggar materials during calcination[J]. Ceramics International, 2022, 48(16): 23341-23347.
|
10 |
GAN C Q, ZHANG H, ZHAO H Z, et al. Firing properties and erosion resistance of hibonite-cordierite sagger[J]. Ceramics International, 2022, 48(20): 30589-30597.
|
11 |
LI B Y, CHEN N, LUO B, et al. ADP-based event-triggered constrained optimal control on spatiotemporal process: Application to temperature field in roller kiln[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, PP: PP.
|
12 |
张继丰. 浅析锂电池正极材料辊道窑拱窑故障的原因与对策[J]. 中国设备工程, 2020(13): 175-176.
|
|
ZHANG J F. Analysis on the causes and countermeasures of arch kiln failure of roller kiln as cathode material of lithium battery[J]. China Plant Engineering, 2020(13): 175-176.
|
13 |
KRMPOTIC D. Information impactogram application for fast detection of temperature instability zone of a two-channel ceramic roller kiln[J]. Tehnicki Vjesnik-Technical Gazette, 2015, 22(4): 981-987.
|
14 |
田力. 辊道窑温度均匀性及工艺参数的研究与优化[D]. 广州: 广东工业大学, 2020.
|
|
TIAN L. Research and optimization of temperature uniformity and process parameters of roller kiln[D]. Guangzhou: Guangdong University of Technology, 2020.
|
15 |
姜永正, 李学军, 何宽芳, 等. 基于柔性动力学的辊道窑烧结过程匣钵运动特性分析[J]. 仪器仪表学报, 2019, 40(4): 248-254.
|
|
JIANG Y Z, LI X J, HE K F, et al. Motion characteristic analysis of saggar during the calcination process in roller kiln based on flexibility dynamics[J]. Chinese Journal of Scientific Instrument, 2019, 40(4): 248-254.
|
16 |
奚慧春, 冯青, 陆琳, 等. 新型陶瓷辊棒的结构及弯曲受力分析研究[J]. 中国陶瓷, 2020, 56(7): 59-62.
|
|
XI H C, FENG Q, LU L, et al. Study on structure and bending force of new type ceramic roller[J]. China Ceramics, 2020, 56(7): 59-62.
|
17 |
HAJŽMAN M, POLACH P, JANKOVEC J. Modelling and simulation of rigid bodies transportation by means of rotating flexible rollers[J]. Meccanica, 2012, 47(2): 455-468.
|